Application of Network Pharmacology Based on Artificial Intelligence Algorithms in Drug Development

  • Chapter
  • First Online:
Network Pharmacology
  • 1300 Accesses

Abstract

The continuous development and progress of biotechnology and information technology provides data for pharmaceutical research and application. It is difficult to fully utilize large-scale data with simple statistical analysis methods. In order to improve data utilization, pharmaceutical research must be promoted using advanced information analysis. Artificial intelligence has experienced half a century of development since its inception and has been successfully applied to many industrial and technological fields. Recently, breakthroughs in machine learning represented by deep learning have made artificial intelligence one of the most popular research directions. Artificial intelligence algorithms use different types of data based on various strategies to do multiple tasks such as search and discrimination, and are suitable for solving massive data analysis problems faced in network pharmacological research. This chapter briefly introduces artificial intelligence algorithms and their applications in network pharmacology research, and provides references for researchers to better understand and apply artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y. Progress in network pharmacology and modern research of traditional Chinese medicine. Chin J Pharmacol Toxicol. 2015;29(06):883–92 (in Chinese).

    Google Scholar 

  3. Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique. 2000;33.

    Google Scholar 

  4. Selim S, Alsultan K. A simulated annealing algorithm for the clustering problem. 1991;24.

    Google Scholar 

  5. Zou L. Artificial intelligence and its development and application. Inf Network Secur. 2012(02):11–3 (in Chinese).

    Google Scholar 

  6. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.

    Article  Google Scholar 

  7. Lecun Y, Boser B, Denker J, et al. Handwritten digit recognition with a back-propagation network. 1997;2.

    Google Scholar 

  8. Mikolov T, Deoras A, Povey D, et al. Strategies for training large scale neural network language models. 2011.

    Google Scholar 

  9. Mohamed A, Dahl GE, Hinton G. Acoustic modeling using deep belief networks. IEEE Trans Audio Speech Lang Process. 2012;20(1):14–22.

    Article  Google Scholar 

  10. Kalinin AA, Higgins GA, Reamaroon N, et al. Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics. 2018;19(7):629–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inf. 2016;35(1):3–14.

    Article  CAS  Google Scholar 

  12. Kotsiantis S. Supervised machine learning: a review of classification techniques. 2007;31.

    Google Scholar 

  13. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  PubMed  Google Scholar 

  14. Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv. 1999;31(3):264–323.

    Article  Google Scholar 

  15. Van Der Maaten L, Postma E, Herik H. Dimensionality reduction: a comparative review. 2007;10.

    Google Scholar 

  16. Zhou W. Network construction technology in network pharmacology research. Int J Pharm Res. 2016;43(05):797–812 (in Chinese).

    Google Scholar 

  17. Akhmedov M, Kedaigle A, Chong RE, et al. PCSF: an R-package for network-based interpretation of high-throughput data. PLoS Comput Biol. 2017;13(7):e1005694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Turing AM. Computing machinery and intelligence// computers and thought. American Association for Artificial Intelligence; 1950.

    Google Scholar 

  19. He H, Garcia EA. Learning from imbalanced data. 2009;21.

    Google Scholar 

  20. Altschul S, Gish W, Miller W, et al. Basic local alignment search tool. 1990;215.

    Google Scholar 

  21. O'Boyle NM, Banck M, James CA, et al. Open Babel: an open chemical toolbox. J Cheminformatics. 2011;3(1):33.

    Article  CAS  Google Scholar 

  22. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009:455–61.

    Google Scholar 

  23. Case DA, Cheatham TE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26(16):1668–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iorio F, Tagliaferri R, Bernardo DD. Identifying network of drug mode of action by gene expression profiling. J Comput Biol. 2009;16(2):241–51.

    Article  CAS  PubMed  Google Scholar 

  25. Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437–52.e17.

    Google Scholar 

  26. Van Der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.

    Google Scholar 

  27. Shekhar K, Lapan SW, Whitney IE, et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell. 2016;166(5):1308–23.e30.

    Google Scholar 

  28. Grimes M, Hall B, Foltz L, et al. Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks. Sci Signal. 2018;11(531):eaaq1087.

    Google Scholar 

  29. Vidyasagar M. Identifying predictive features in drug response using machine learning: opportunities and challenges. Annu Rev Pharmacol Toxicol. 2015;55(1):15–34.

    Article  CAS  PubMed  Google Scholar 

  30. Gamazon E, Wheeler H, Shah K. A gene-based association method for map** traits using reference transcriptome data. 2015;47.

    Google Scholar 

  31. **ong J, Zhou T. Gene regulatory network inference from multifactorial perturbation data. 2012.

    Google Scholar 

  32. Yamanishi Y, Kotera M, Moriya Y, et al. DINIES: drug-target interaction network inference engine based on supervised analysis. Nucleic Acids Res. 2014;42(W1):W39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gopalan PK, Blei DM. Efficient discovery of overlap** communities in massive networks. Proc Natl Acad Sci. 2013;110(36):14534–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–50.

    Article  PubMed  Google Scholar 

  35. Mayr A, Klambauer G, Unterthiner T, et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem Sci. 2018;9(24):5441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Korotcov A, Tkachenko V, Russo DP, et al. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm. 2017;14(12):4462–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Teschendorff AE. Avoiding common pitfalls in machine learning omic data science. Nat Mater. 2019;18(5):422–7.

    Article  CAS  PubMed  Google Scholar 

  38. Bero SA, Muda AK, Choo YH, et al. Similarity measure for molecular structure: a brief review. J Phys: Conf Ser. 2017;892:012015.

    Google Scholar 

  39. Zhang Y, Cheng X, Zhou W. Drug reorientation: an important application field of network pharmacology. Chin J Pharmacol Toxicol. 2012;26(6):779–85 (in Chinese).

    Google Scholar 

  40. Willett P. The calculation of molecular structural similarity: principles and practice. Mol Inf. 2014;33(6–7):403–13.

    Article  CAS  Google Scholar 

  41. Vilar S, Harpaz R, Uriarte E, et al. Drug—drug interaction through molecular structure similarity analysis. J Am Med Inform Assoc. 2012;19(6):1066–74.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yan C, Wang J, Lan W, et al. SDTRLS: predicting drug-target interactions for complex diseases based on chemical substructures. Complexity. 2017;2017:1–10.

    Google Scholar 

  43. Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature. 2009;462(7270):175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Neves BJ, Braga RC, Melo Filho CC, et al. QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol. 2018;9:1275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen R, Liu X, ** S, et al. Machine learning for drug-target interaction prediction. Molecules. 2018;23(9):2208.

    Article  PubMed Central  CAS  Google Scholar 

  46. Mitchell JBO. ChemInform abstract: the relationship between the sequence identities of helical proteins in the PDB and the molecular similarities of their ligands. ChemInform. 2002;33(10):no-no.

    Google Scholar 

  47. Bleakley K, Yamanishi Y. Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics. 2009;25(18):2397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics. 2008;24(13):i232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Michael J, et al. Predicting new molecular targets for known drugs. Nature. 2009;462(7270):175–81.

    Article  CAS  Google Scholar 

  50. Martin YC, Kofron JL, Traphagen LM. Do structurally similar molecules have similar biological activity? J Med Chem. 2002;45(19):4350–8.

    Article  CAS  PubMed  Google Scholar 

  51. Schuffenhauer A, Floersheim P, Acklin P, et al. Similarity metrics for ligands reflecting the similarity of the target proteins. J Chem Inf Comput Sci. 2003;43(2):391–405.

    Article  CAS  PubMed  Google Scholar 

  52. Cheng F, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012;8(5):e1002503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao SW, Li S. Network-based relating pharmacological and genomic spaces for drug target identification. PLoS ONE. 2010;5:e11764.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhang L, Fourches D, Sedykh A, et al. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J Chem Inf Model. 2013;53(2):475–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fan S, Li X. Reverse molecular docking: a new approach to discovery and identification of drug targets. Adv Physiol Sci. 2012;043(005):367–70 (in Chinese).

    Google Scholar 

  56. Kuhn M, Campillos M, González P, et al. Large-scale prediction of drug-target relationships. FEBS Lett. 2008;582(8):1283–90.

    Article  CAS  PubMed  Google Scholar 

  57. Hansen NT, Brunak S, Altman RB. Generating genome-scale candidate gene lists for pharmacogenomics. Clin Pharmacol Ther. 2009;86(2):183–9.

    Article  CAS  PubMed  Google Scholar 

  58. Kutalik Z, Beckmann JS, Bergmann S, et al. A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nat Biotechnol. 2008;26(5):531–9.

    Article  CAS  PubMed  Google Scholar 

  59. Chen YZ, Zhi DG. Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins. 2001;43(2):217–26.

    Article  CAS  PubMed  Google Scholar 

  60. Li H, Gao Z, Kang L, et al. TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res. 2006;34(Web Server):W219–W224.

    Google Scholar 

  61. Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore map** approach. Nucleic Acids Res. 2010;38(Web Server):W609–W614.

    Google Scholar 

  62. Kinnings SL, Jackson RM. ReverseScreen3D: a structure-based ligand matching method to identify protein targets. J Chem Inf Model. 2011;51(3):624–34.

    Article  CAS  PubMed  Google Scholar 

  63. Wang JC, Chu PY, Chen CM, et al. idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res. 2012;40(W1):W393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yue QX, Cao ZW, Guan SH, et al. Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computer-automated estimation of the possible drug target network. Mol Cell Proteomics. 2008;7(5):949–61.

    Article  CAS  PubMed  Google Scholar 

  65. Feng LX, **g CJ, Tang KL, et al. Clarifying the signal network of salvianolic acid B using proteomic assay and bioinformatic analysis†. PROTEOMICS. 2011;11(8):1473–85.

    Article  CAS  PubMed  Google Scholar 

  66. Gormley GJ, Stoner E, Bruskewitz RC, et al. The effect of finasteride in men with benign prostatic hyperplasia. J Urol. 2002;167(2, Part 2):1102–7.

    Google Scholar 

  67. Wu Z, Li W, Liu G, et al. Network-based methods for prediction of drug-target interactions. Front Pharmacol. 2018;9:1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Feixiong C, Chuang L, **g J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol. 2012;8(5):e1002503.

    Google Scholar 

  69. Wu H, Miller E, Wijegunawardana D, et al. MD-Miner: a network-based approach for personalized drug repositioning. BMC Syst Biol. 2017;11(S5):86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Isik Z, Baldow C, Cannistraci CV, et al. Drug target prioritization by perturbed gene expression and network information. Sci Rep. 2015;5(1):17417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Melo Filho CC, Dantas RF, Braga RC, et al. QSAR-driven discovery of novel chemical scaffolds active against Schistosoma mansoni. J Chem Inf Model. 2016;56(7):1357–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gomes MN, Braga RC, Grzelak EM, et al. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur J Med Chem. 2017;137:126–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shen J, Tan C, Zhang Y, et al. Discovery of potent ligands for estrogen receptor β by structure-based virtual screening. J Med Chem. 2010;53(14):5361–5.

    Article  CAS  PubMed  Google Scholar 

  74. Hu G, Li X, Zhang X, et al. Discovery of inhibitors to block interactions of HIV-1 integrase with human LEDGF/p75 via structure-based virtual screening and bioassays. J Med Chem. 2012;55(22):10108–17.

    Article  CAS  PubMed  Google Scholar 

  75. Kumari P, Nath A, Chaube R. Identification of human drug targets using machine-learning algorithms. Comput Biol Med. 2015;56:175–81.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang X, Li L, Ng MK, et al. Drug-target interaction prediction by integrating multiview network data. Comput Biol Chem. 2017;69:185–93.

    Article  CAS  PubMed  Google Scholar 

  77. Jamali AA, Ferdousi R, Razzaghi S, et al. DrugMiner: comparative analysis of machine learning algorithms for prediction of potential druggable proteins. Drug Discov Today. 2016;21(5):718–24.

    Article  CAS  PubMed  Google Scholar 

  78. Tang Y, Zhu W, Chen K, et al. New technologies in computer-aided drug design: toward target identification and new chemical entity discovery. Drug Discov Today: Technologies. 2006;3(3):307–13.

    Article  PubMed  Google Scholar 

  79. Rognan D. Structure-based approaches to target fishing and ligand profiling. Mol Inf. 2010;29(3):176–87.

    Article  CAS  Google Scholar 

  80. Pireddu L, Poulin B, Szafron D, et al. Pathway analyst automated metabolic pathway prediction// IEEE Symposium on Computational Intelligence in Bioinformatics & Computational Biology. IEEE, 2005.

    Google Scholar 

  81. Dale JM, Popescu L, Karp PD. Machine learning methods for metabolic pathway prediction. BMC Bioinformatics. 2010;11(1):15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Boudellioua I, Saidi R, Hoehndorf R, et al. Prediction of metabolic pathway involvement in prokaryotic UniProtKB data by association rule mining. PLoS ONE. 2016;11(7):e0158896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pang H, Lin A, Holford M, et al. Pathway analysis using random forests classification and regression. Bioinformatics. 2006;22(16):2028–36.

    Article  CAS  PubMed  Google Scholar 

  84. Hancock T, Mamitsuka H. A Markov classification model for metabolic pathways. Algorithms Mol Biol. 2010;5(1):10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov. 2011;10(6):428–38.

    Article  CAS  PubMed  Google Scholar 

  86. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–19.

    Article  CAS  PubMed  Google Scholar 

  87. Campillos M, Kuhn M, Gavin AC, et al. Drug target identification using side-effect similarity. Science. 2008;321(5886):263–6.

    Article  CAS  PubMed  Google Scholar 

  88. Yang L, Agarwal P. Systematic drug repositioning based on clinical side-effects. P. Csermely. PLoS ONE. 2011;6(12):e28025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dimitri GM, Lió P. DrugClust: a machine learning approach for drugs side effects prediction. Comput Biol Chem. 2017;68:204–10.

    Article  CAS  PubMed  Google Scholar 

  90. Luo Y, Liu Q, Wu W, et al. Predicting drug side effects based on link prediction in bipartite network. Proceedings - 2014 7th International Conference on BioMedical Engineering and Informatics, BMEI 2014; 2015. p. 729–33.

    Google Scholar 

  91. Ferrero E, Agarwal P. Connecting genetics and gene expression data for target prioritisation and drug repositioning. BioData Mining. 2018;11(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yin W, Gao C, Xu Y, et al. Learning opportunities for drug repositioning via GWAS and PheWAS findings. 2018.

    Google Scholar 

  93. Ye H, Liu Q, Wei J. Construction of drug network based on side effects and its application for drug repositioning. PLoS ONE. 2014;9(2):e87864.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wang Y, Chen S, Deng N, et al. Drug repositioning by Kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS ONE. 2013;8(11):e78518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Duan Q, Flynn C, Niepel M, et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res. 2014;42(W1):W449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lamb J. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.

    Article  CAS  PubMed  Google Scholar 

  97. Keenan AB, Jenkins SL, Jagodnik KM, et al. The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst. 2018;6(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  98. Musa A, Ghoraie LS, Zhang SD, et al. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinformatics. 2017:bbw112.

    Google Scholar 

  99. Iorio F, Rittman T, Ge H, et al. Transcriptional data: a new gateway to drug repositioning? Drug Discov Today. 2013;18(7–8):350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. **e L, He S, Wen Y, et al. Discovery of novel therapeutic properties of drugs from transcriptional responses based on multi-label classification. Sci Rep. 2017;7(1)

    Google Scholar 

  101. Young WC, Raftery AE, Yeung KY. A posterior probability approach for gene regulatory network inference in genetic perturbation data. Math Biosci Eng. 2016;13:1241–51.

    Article  PubMed  Google Scholar 

  102. Lee H, Kang S, Kim W. Drug repositioning for cancer therapy based on large-scale drug-induced transcriptional signatures. E. PLoS ONE. 2016;11(3):e0150460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Sawada R, Iwata M, Tabei Y, et al. Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures. Sci Rep. 2018;8(1):156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Edgar R, lash A. 6. The Gene Expression Omnibus (GEO): a gene expression and hybridization repository. 2002.

    Google Scholar 

  105. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991.

    CAS  PubMed  Google Scholar 

  106. Parkinson H, Kapushesky M, Shojatalab M, et al. ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 2007;35(Database issue):D747–50.

    Google Scholar 

  107. Luo H, Zhang P, Cao XH, et al. DPDR-CPI, a server that predicts drug positioning and drug repositioning via chemical-protein interactome. Sci Rep. 2016;6(1):35996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen JJF, Visco DP. Develo** an in silico pipeline for faster drug candidate discovery: virtual high throughput screening with the signature molecular descriptor using support vector machine models. Chem Eng Sci. 2016:S0009250916300914.

    Google Scholar 

  109. Li H, Gao Z, Kang L, et al. TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res. 2006;34(Web Server):W219–W224.

    Google Scholar 

  110. Luo H, Chen J, Shi L, et al. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res. 2011;39(suppl_2):W492–W498.

    Google Scholar 

  111. Ruiz Carmona S, Alvarez-Garcia D, Foloppe N, et al. rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol. 2014;10:e1003571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lu L. Link prediction of complex networks. J UESTC. 2010;39(5):651–61 (in Chinese).

    Google Scholar 

  113. Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk on the heterogeneous network. Mol Biosyst. 2012;8(7):1970.

    Article  CAS  PubMed  Google Scholar 

  114. Seal A, Ahn YY, Wild DJ. Optimizing drug-target interaction prediction based on random walk on heterogeneous networks. J Cheminform. 2015;7:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zhang Y, Feng Y. Methods and development of link prediction. Measure Control Technol. 2019; 38(2):8–12 (in Chinese).

    Google Scholar 

  116. Liu W, Lü LY. Link prediction based on local random walk. EPL (Europhys Lett). 2010;89(5):58007.

    Google Scholar 

  117. Chen B. Link prediction of complex networks and its application in recommendation. Nan**g University of Aeronautics and Astronautics, 2016;126 (in Chinese).

    Google Scholar 

  118. Lorrain F, White HC. Structural equivalence of individuals in social networks. Soc Networks. 1977;1(1):67–98.

    Google Scholar 

  119. Chowdhury G. Introduction to modern information retrieval. McGraw Hill; 1983.

    Google Scholar 

  120. Zhang W, Huai Y, Miao Z, et al. Systems pharmacology for investigation of the mechanisms of action of traditional chinese medicine in drug discovery. Front Pharmacol. 2019;10

    Google Scholar 

  121. Wang J, Wu MY, Tan JQ, et al. High content screening for drug discovery from traditional Chinese medicine. Chin Med. 2019;14(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Xu HY, Zhang YQ, Liu ZM, et al. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019;47(Database issue):D976.

    Article  CAS  PubMed  Google Scholar 

  123. Liu BH, Gu YH, Tu Y, et al. Molecular regulative mechanisms of aging and interventional effects of Chinese herbal medicine. Zhongguo Zhong Yao Za Zhi. 2017;42(16):3065–71.

    PubMed  Google Scholar 

  124. Chen X, Zhou H, Liu YB, et al. Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. 2006.

    Google Scholar 

  125. Zhu Y, Gao B, Cui M. Design and implementation of TCM prescription analysis system framework. Chin J Tradit Chin Med. 2014;29(5):1543–46 (in Chinese).

    Google Scholar 

  126. Li S. conception and Research on biomarkers of TCM syndromes. J Tradit Chin Med. 2009(9):7–10 (in Chinese).

    Google Scholar 

  127. Li Q, Cheng T, Wang Y, et al. PubChem as a public resource for drug discovery. Drug Discov Today. 2010;15(23–24):1052–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.

    Article  CAS  PubMed  Google Scholar 

  129. Burley SK, Berman HM, Bhikadiya C, et al. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019;47(D1):D464–74.

    Article  CAS  PubMed  Google Scholar 

  130. Kuhn M, Letunic I, Jensen LJ, et al. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44(D1):D1075–9.

    Article  CAS  PubMed  Google Scholar 

  131. Edgar R, lash A. 6. The Gene Expression Omnibus (GEO): a gene expression and hybridization repository. 2002.

    Google Scholar 

  132. Tomczak K, Czerwińska P, Wiznerowicz M. Review the Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Współczesna Onkologia. 2015;1A:68–77.

    Article  Google Scholar 

  133. Aliper A, Plis S, Artemov A, et al. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang Z, Clark NR, Ma’ayan A. Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics. 2016;32(15):2338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, W., Li, X., Han, L., Fan, S. (2021). Application of Network Pharmacology Based on Artificial Intelligence Algorithms in Drug Development. In: Li, S. (eds) Network Pharmacology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0753-0_2

Download citation

Publish with us

Policies and ethics

Navigation