Design of Intelligent Mobile Robot Control System Based on Gesture Recognition

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1253))

Included in the following conference series:

Abstract

At present, technologies such as smart home and intelligent wearable devices are develo**, bringing convenience and enjoyment to our daily lives, while also avoiding a series of potential hidden dangers. This study aims to design an intelligent mobile robot control system based on gesture recognition which allows people to control the forward, backward and steering of the mobile robot through simple gestures. For gesture recognition, this paper uses the MPU6050 accelerometer to detect and recognize human gestures. The system adopts the control chip STM32 MCU to collect the acceleration data. The results of the experiments have shown that the proposed gesture recognition device can control the mobile robot maneuvering well and complete the function of forward and backward and steering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, J., Gao, Y., Liu, W., Wu, W., Lim, S.-J.: An asynchronous clustering and mobile data gathering schema based on timer mechanism in wireless sensor networks. Comput. Mater. Continua 58(3), 711–725 (2019)

    Article  Google Scholar 

  2. Chin, H.-C., Pang, X., Wang, Z.: Analysis of bus ride comfort using smartphone sensor data. Comput. Mater. Continua 60(2), 455–463 (2019)

    Article  Google Scholar 

  3. Sun, Y., Gao, Q., Du, X., Gu, Z.: Smartphone user authentication based on holding position and touch-ty** biometrics. Comput. Mater. Continua 61(3), 1365–1375 (2019)

    Article  Google Scholar 

  4. Su, J., Wen, G., Hong, D.: A new RFID anti-collision algorithm based on the Q-ary search scheme. Chin. J. Electron. 24(4), 679–683 (2015)

    Article  Google Scholar 

  5. Luh, G., Ma, Y., Yen, C., Lin, H.: Muscle-gesture robot hand control based on sEMG signals with wavelet transform features and neural network classifier. In: 2016 International Conference on Machine Learning and Cybernetics (ICMLC), Jeju, pp. 627–632 (2016)

    Google Scholar 

  6. Chen, S., Ma, H., Yang, C., Fu, M.: Hand gesture based robot control system using leap motion. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds.) ICIRA 2015. LNCS (LNAI), vol. 9244, pp. 581–591. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22879-2_53

    Chapter  Google Scholar 

  7. Ju, Z., Ji, X., Li, J., Liu, H.: An integrative framework of human hand gesture segmentation for human-robot interaction. IEEE Syst. J. 11(3), 1326–1336 (2017)

    Article  Google Scholar 

  8. Kundu, A.S., Mazumder, O., Lenka, P.K., et al.: Hand gesture recognition based omnidirectional wheelchair control using IMU and EMG sensors. J. Intell. Robot. Syst. 91, 529 (2018)

    Article  Google Scholar 

  9. Jiang, S., Lv, B., Sheng, X., Zhang, C., Wang, H., Shull, P.B.: Development of a real-time hand gesture recognition wristband based on sEMG and IMU sensing. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, pp. 1256–1261 (2016)

    Google Scholar 

  10. Siddiqui, N., Chan, R.H.M.: A wearable hand gesture recognition device based on acoustic measurements at wrist. In: 2017 39th annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, pp. 4443–4446 (2017)

    Google Scholar 

  11. Kosawa, H., Konishi, S.: Wearable hand motion capture device. In: 2018 IEEE CPMT Symposium Japan (ICSJ), Kyoto, pp. 129–130 (2018)

    Google Scholar 

  12. Sun, J., Ji, T., Zhang, S., Yang, J., Ji, G.: Research on the hand gesture recognition based on deep learning. In: 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, pp. 1–4 (2018)

    Google Scholar 

  13. Yu, Q., Lu, Z., Liu, C., Wang, H., Tang, W.: Human-robot interface based on WSSS IMU sensors. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, pp. 846–849 (2015)

    Google Scholar 

  14. Assad, C., et al.: Live demonstration: BioSleeve, a wearable hands-free gesture control interface. In: 2016 IEEE Sensors, Orlando, FL, p. 1 (2016)

    Google Scholar 

  15. Anusha, L., Devi, Y.U.: Implementation of gesture based voice and language translator for dumb people. In: 2016 International Conference on Communication and Electronics Systems (ICCES), Combatore, pp. 1–4 (2016)

    Google Scholar 

  16. Basanta, H., Huang, Y., Lee, T.: Assistive design for elderly living ambient using voice and gesture recognition system. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, pp. 840–845 (2017)

    Google Scholar 

  17. Sidek, O., Abdul Hadi, M.: Wireless gesture recognition system using MEMS accelerometer. In: 2014 International Symposium on Technology Management and Emerging Technologies, Bandung, pp. 444–447 (2014)

    Google Scholar 

  18. Zhuang, W., Chen, Y., Su, J., Wang, B., Gao, C.: Design of human activity recognition algorithms based on a single wearable IMU sensor. Int. J. Sens. Netw. 30(3), 193–206 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61972207), Jiangsu Provincial Government Scholarship for Studying Abroad and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, D., Zhuang, W., Shen, Y., Li, L., Wang, H. (2020). Design of Intelligent Mobile Robot Control System Based on Gesture Recognition. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Communications in Computer and Information Science, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-8086-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8086-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8085-7

  • Online ISBN: 978-981-15-8086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation