Composition and Arrangement of Carbon-Derived Membranes for Purifying Wastewater

  • Chapter
  • First Online:
Environmental Remediation Through Carbon Based Nano Composites

Part of the book series: Green Energy and Technology ((GREEN))

  • 377 Accesses

Abstract

Wastewater can be treated in many ways, out of which membrane separation technology is considered the most effective and unique one. Especially, carbon nanotubes (CNTs)-based membranes are getting noteworthy attention owing to the combined merits of CNTs and membrane separation. This results in offering superior membrane properties. This chapter discusses the classification and characterization of CNTs based membranes. It also reviews the fabrication methods for mixed CNTs based membranes in detail. Furthermore, the future direction and challenges related to CNTs based membranes are also briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamczak M, Kamińska G, Bohdziewicz J (2019) Preparation of polymer membranes by in situ interfacial polymerization. Int J Pol Sci 2019:1–13

    Article  Google Scholar 

  2. Al-Hobaib AS, Al-Sheetan KhM, Shaik MR, Al-Suhybani MS (2017) Modification of thin-film polyamide membrane with multi-walled carbon nanotubes by interfacial polymerization. Appl Water Sci 7:4341–4350

    Article  CAS  Google Scholar 

  3. Alpatova A, Meshref M, Mcphedran KN, El-din MG (2015) Composite polyvinylidene fluoride (PVDF) membrane impregnated with Fe2O3 nanoparticles and multiwalled carbon nanotubes for catalytic degradation of organic contaminants. J Membr Sci 490:227–235

    Article  CAS  Google Scholar 

  4. Asmaly HA, Abussaud B, Ihsanullah Saleh TA, Alaadin A, Laoui T, Shemsi AM, Gupta VK, Atieh MA, Asmaly HA, Abussaud B, Saleh TA, Alaadin A (2015) Evaluation of micro- and nano-carbon-based adsorbents for the removal of phenol from aqueous solutions. Toxicol Environ Chem 97:1164–1179

    Article  CAS  Google Scholar 

  5. Asmaly HA, Abussaud B, Ihsanullah Saleh TA, Gupta VK, Atieh MA (2015) Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: from synthesis to enhanced removal of phenol. J Saudi Chem Soc 19:511–520

    Article  Google Scholar 

  6. Baek Y, Kim C, Seo DK, Kim T, Lee JS, Kim YH, Ahn KH, Bae SS, Lee SC, Lim J (2014) High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J Membr Sci 460:171–177

    Article  CAS  Google Scholar 

  7. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118

    Article  Google Scholar 

  8. Boge J, Sweetman LJ, Panhuis M, Ralph SF (2009) The effect of preparation conditions and biopolymer dispersants on the properties of SWNTs buckypapers. J Mater Chem A 19:9131–9140

    Article  CAS  Google Scholar 

  9. Brady-Estévez AS, Kang S, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4:481–484

    Article  Google Scholar 

  10. Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the Hipco process: a parametric study. Vac Sci Technol A 19:1800–1805

    Article  CAS  Google Scholar 

  11. Brunet L, Lyon D, Zodrow K, Rouch J-C, Caussat B, Serp P, Remigy J-C, Wiesner M, Alvarez PJ (2008) Properties of membranes containing semi-dispersed carbon nanotubes. Environ Eng Sci 25:565–575

    Article  CAS  Google Scholar 

  12. Celik E, Park H, Choi H (2011) Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res 45:274–282

    Article  CAS  Google Scholar 

  13. Chen W, Chen S, Liang T, Zhang Q, Fan Z, Yin H, Huang K-W, Zhang X, Lai Z, Sheng P (2018) High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat Nanotechnol 13:345–350

    Article  CAS  Google Scholar 

  14. Choi J, Jegal J, Kim W (2006) Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J Membr Sci 284:406–415

    Article  CAS  Google Scholar 

  15. Coleman JN, Blau WJ, Dalton AB, Munoz E, Collins S, Kim BG, Razal J, Selvidge M, Vieiro G, Baughman RH (2003) Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl Phys Lett 82:1682–1684

    Article  CAS  Google Scholar 

  16. Das R, Ali E, Bee S, Hamid A, Ramakrishna S, Zaman Z (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109

    Article  CAS  Google Scholar 

  17. Dharap P, Li Z, Nagarajaiah S, Barrera EV (2004) Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 15:379–382

    Article  CAS  Google Scholar 

  18. Ding J, Li X, Wang X, Zhang J, Yu D, Qiu B (2015) Fabrication of vertical array CNTs/polyaniline composite membranes by microwave-assisted in situ polymerization. Nanoscale Res Lett 10:1–9

    Article  Google Scholar 

  19. Dong J, Ma Q (2015) Advance sin mechanisms and signaling pathways of carbon nano tube toxicity. Nano Toxicol 9:658–676

    CAS  Google Scholar 

  20. Dresselhaus MS, Dresselhaus G, Jorio A (2007) Raman spectroscopy of carbon nanotubes in 1997 and 2007. J Phys Chem C 111:17887–17893

    Article  CAS  Google Scholar 

  21. Dresselhaus MS, Jorio A, Saito R (2010) Characterizing grapheme graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Condens Matter Phys 1:89–108

    Article  CAS  Google Scholar 

  22. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333:712–717

    Article  CAS  Google Scholar 

  23. Ema M, Gamo M, Honda K (2016) A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regul Toxicol Pharmacol 74:42–63

    Article  CAS  Google Scholar 

  24. Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus MS (2005) Anotechnology: ‘buckypaper’ from coaxial nanotubes. Nature 433:476

    Article  CAS  Google Scholar 

  25. Farahani MHDA, Vatanpour V (2018) A comprehensive study on the performance and antifouling enhancement of the PVDF mixed matrix membranes by embedding different nanoparticulates: clay, functionalized carbon nanotube, SiO2 and TiO2. Sep Purif Technol 197:372–381

    Article  CAS  Google Scholar 

  26. Frizzell CJ, Panhuis M, Coutinho DH, Balkus KJ, Minett AI, Blau WJ, Coleman JN (2005) Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: the role of polymer molecular weight and chain conformation. Phys Rev B 72:245420

    Article  Google Scholar 

  27. Goh PS, Ismail AF, Ng BC (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308:2–14

    Article  CAS  Google Scholar 

  28. Guo YS, Mi YF, Ji YL, An QF, Gao CJ (2019) One-step surface grafting method for preparing zwitterionic nanofiltation membrane via in situ introduction of initiator in interfacial polymerization. ACS Appl Polym Mater 15:1022–1033

    Article  Google Scholar 

  29. Hebbar RS, Isloor AM, Inamuddin Asiri AM (2017) Carbon nanotube and graphene-based advanced membrane materials for desalination. Environ Chem Lett 15:643–671

    Article  CAS  Google Scholar 

  30. Herrero-Latorre C, Alvarez-Mendez J, Barciela-Garcia J, García-Martin S, Pena-Crecente RM (2015) Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: a review. Anal Chim Acta 853:77–94

    Article  CAS  Google Scholar 

  31. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) A ligned multi walled carbon nanotube membranes. Science 303:62–65

    Article  CAS  Google Scholar 

  32. Ihsanullah AM, Al Amer, Laoui T, Abbas A, Al-Aqeeli N, Patel F, Khraisheh M, Ali M, Hilal N (2016) Fabrication and antifouling behaviour of a carbon nanotube membrane. Mater Des 89:549–558

    Article  CAS  Google Scholar 

  33. Ihsanullah T, Laoui AM, Al-Amer Khalil AB, Abbas A, Khraisheh M, Atieh MA (2015) Novel anti-microbial membrane for desalination pretreatment: a silver nanoparticle-doped carbon nanotube membrane. Desalination 376:82–93

    Article  CAS  Google Scholar 

  34. Ihsanullah A Abbas, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161

    Article  CAS  Google Scholar 

  35. Ihsanullah Al-khaldi FA, Abu-sharkh B, Mahmoud A, Qureshi MI, Laoui T, Atieh MA (2016) Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalin Water Treat 57:7232–7244

    Article  CAS  Google Scholar 

  36. Ihsanullah Asmaly HA, Saleh TA, Laoui T, Gupta VK, Atieh MA (2015) Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties. J Mol Liq 206:176–182

    Article  CAS  Google Scholar 

  37. Ihsanullah Al-Khaldi FA, Abusharkh B, Khaled M, Atieh MA, Nasser MS, Laoui T, Saleh TA, Agarwal S, Tyagi I, Gupta VK (2015) Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J Mol Liq 204:255–263

    Article  CAS  Google Scholar 

  38. Kar S, Bindal RC, Tewari PK (2012) Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7:385–389

    Article  CAS  Google Scholar 

  39. Kar S, Subramanian M, Pal A, Ghosh AK, Bindal RC, Prabhakar S, Nuwad J, Pillai CGS, Chattopadhyay S, Tewari PK (2013) Preparation, characterisation and performance evaluation of anti-biofouling property of carbon nanotube-polysulfone nanocomposite membranes. AIP Conf Proc 1538:181–185

    Article  Google Scholar 

  40. Khalid A, Al-Juhani AA, Al-Hamouz OC, Laoui T, Khan Z, AliAtieh M (2015) Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination. Desalination 367:134–144

    Article  CAS  Google Scholar 

  41. Khoshrou S, Moghbeli MR, Ghasemi E (2015) Polysulfone/carbon nanotubes asymmetric nanocomposite membranes: effect of nanotubes surface modification on morphology and water permeability. Iran J Chem Eng 12:69–83

    Google Scholar 

  42. Kim E, Hwang G, El-din MG, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394–395:37–48

    Article  Google Scholar 

  43. Kim HJ, Choi K, Baek Y, Kim D, Shim J, Yoon J, Lee J (2014) High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl Mater Interfaces 6:2819–2829

    Article  CAS  Google Scholar 

  44. Kim J, Van Der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349

    Article  CAS  Google Scholar 

  45. Kim S, Fornasiero F, Park HG, In JB, Meshot E, Giraldo G, Stadermann M, Fireman M, Shan J, Grigoropoulos CP (2014) Fabrication of flexible, aligned carbon nanotube/polymer composite membranes by in-situ polymerization. J Membr Sci 460:91–98

    Article  CAS  Google Scholar 

  46. Kim TH, Lee I, Yeon K-M, Kim J (2018) Bio catalytic membrane with acylase stabilized on intact carbon nanotubes for effective antifouling via quorum quenching. J Membr Sci 554:357–365

    Article  CAS  Google Scholar 

  47. Kim YA, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS (2006) Fabrication of high-purity, double-walled carbon nanotube buckypaper. Chem Vap Depos 12:327–330

    Article  CAS  Google Scholar 

  48. Knapp W, Schleussner D (2002) Carbon buckypaper field emission investigations. Vacuum 69:333–338

    Article  CAS  Google Scholar 

  49. Lai GS, Lau WJ, Goh PS, Tan YH, NgA BC, Ismail F (2019) A novel interfacial polymerization approach towards synthesis of graphene oxide-incorporated thin film nanocomposite membrane with improved surface properties. Arab J Chem 12:75–87

    Article  CAS  Google Scholar 

  50. Lalia BS, Ahmed FE, Shah T, Hilal N, Hashaikeh R (2015) Electrically conductive membranes based on carbon nanostructures for self-cleaning of biofouling. Desalination 360:8–12

    Article  CAS  Google Scholar 

  51. Lee B, Baek Y, Lee M, Jeong DH, Lee HH, Yoon J, Kim YH (2015) A carbon nanotube wall membrane for water treatment. Nat Commun 6:7109

    Article  CAS  Google Scholar 

  52. Lee J, Jeong S, Liu Z (2016) Progress and challenges of carbon nanotube membrane in water treatment. Crit Rev Environ Sci Technol 46:999–1046

    Article  CAS  Google Scholar 

  53. Lee J, Ye Y, Ward AJ, Zhou C, Chen V, Minett AI, Lee S, Liu Z, Chae S, Shi J (2016) High flux and high selectivity carbon nanotube composite membranes for natural organic matter removal. Sep Purif Technol 163:109–119

    Article  CAS  Google Scholar 

  54. Lee K-J, Park H-D (2016) The most densified vertically-aligned carbon nanotube membranes and their normalized water permeability and high pressure durability. J Membr Sci 501:144–151

    Article  CAS  Google Scholar 

  55. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multi wall carbon nanotubes. Carbon 49:2581–2602

    Article  CAS  Google Scholar 

  56. Li S, Liao G, Liu Z, Pan Y, Wu Q, Weng Y, Zhang X, Yang Z, Tsui OKC (2014) Enhanced water flux in vertically aligned carbon nanotube arrays and polyethersulfone composite membranes. J. Mater. Chem. A. 2:12171–12176

    Article  CAS  Google Scholar 

  57. Liu L, Son M, Chakraborty S, Bhattacharjee C (2013) Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by-layer technique: characterization and its anti-protein fouling properties for water treatment. Desalin Water Treat 51:6194–6200

    Article  CAS  Google Scholar 

  58. Liu L, Son M, Park H, Celik E, Bhattacharjee C, Choi H (2014) Efficacy of CNT-bound polyelectrolyte membrane by spray-assisted layer-by-layer (LbL) technique on water purification. RSC adv 4:32858–32865

    Article  CAS  Google Scholar 

  59. López-Lorente AI, Simonet BM, Valcárcel M (2010) The potential of carbon nanotube membranes for analytical separations. Anal Chem 82:5399–5407

    Article  Google Scholar 

  60. Ma J, Zhao Y, Xu Z, Min C, Zhou B, Li Y, Li B, Niu J (2013) Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultra-filtration membranes. Desalination 320:1–9

    Article  CAS  Google Scholar 

  61. Ma L, Dong X, Chen M, Zhu L, Wang C, Yang F, Dong Y (2017) Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: a review. Membranes (basel) 7:1–21

    Google Scholar 

  62. Madaeni SS, Zinadini S, Vatanpour V (2013) Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Sep Purif Technol 111:98–107

    Article  CAS  Google Scholar 

  63. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    Article  CAS  Google Scholar 

  64. Mah KH, Yussof KHY, Seman MNA, Mohammad AW (2016) Synthesis and characterization of polyester thin film composite membrane via interfacial polymerization: fouling behaviour of uncharged solute. Mater Sci Eng 162:012037

    Google Scholar 

  65. Majeed S, Fierro D, Buhr K, Wind J, Du B, Boschetti-de-Fierro A, Abetz V (2012) Multiwalled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes. J Membr Sci 403–404:101–109

    Article  Google Scholar 

  66. Majumder M, Chopra N, Hinds BJ (2005) Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J Am Chem Soc 127:9062–9070

    Article  CAS  Google Scholar 

  67. Majumder M, Keis K, Zhan X, Meadows C, Cole J, Hinds BJ (2008) Enhanced electrostatic modulation of ionic diffusion through carbon nanotube membranes by diazonium grafting chemistry. J Membr Sci 316:89–96

    Article  CAS  Google Scholar 

  68. Majumder M, Stinchcomb A, Hinds BJ (2010) Towards mimicking natural protein channels with aligned carbon nano tube membranes for active drug delivery. Life Sci 86:563–568

    Article  CAS  Google Scholar 

  69. Manawi Y, Kochkodan V, Hussein MA, Khaleel MA, Khraisheh M, Hilal N (2016) Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination. Desalination 391:69–88

    Article  CAS  Google Scholar 

  70. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κb in human keratinocytes. Nano Lett 5:1676–1684

    Article  CAS  Google Scholar 

  71. Najjar A, Sabri S, Al-Gaashani R, Atieh MA, Kochkodan V (2019) Antibiofouling performance by polyethersulfone membranes cast with oxidized multiwalled carbon nanotubes and arabic gum. Membranes 9:1–32

    Article  Google Scholar 

  72. Shen Jn, Yu Cc, Ruan Hm, Van Der Bruggen B (2013) Preparation and characterization of thin-film nanocomposite membranes embedded with poly (methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J Membr Sci 442:18–26

    Article  CAS  Google Scholar 

  73. Nikolaev P, Broni kowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91–97

    Article  CAS  Google Scholar 

  74. Ong L-C, Chung FF-L, Tan Y-F, Leong C-O (2016) Toxicity of single-walled carbon nanotubes. Arch Toxicol 90:103–118

    Article  CAS  Google Scholar 

  75. Park S-M, Jung J, Lee S, Baek Y, Yoon J, Seo DK, Kim YH (2014) Fouling and rejection behavior of carbon nanotube membranes. Desalination 343:180–186

    Article  CAS  Google Scholar 

  76. Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Environ Sci 4:1946–1971

    CAS  Google Scholar 

  77. Phao N, Nxumalo EN, Mamba BB, Mhlanga SD (2013) A nitrogen-doped carbon nanotube enhanced polyethersulfone membrane system for water treatment. Phys Chem Earth 66:148–156

    Article  Google Scholar 

  78. ** D, Wang C, Dong X, Dong Y (2016) Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition. Appl Surf Sci 369:299–307

    Article  CAS  Google Scholar 

  79. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. J Mater Chem A 21:15872–15884

    Article  CAS  Google Scholar 

  80. Prokudina NA, Shishchenko ER, Joo O-S, Hyung K-H, Han S-H (2005) A carbon nanotube film as a radio frequency filter. Carbon 43:1815–1819

    Article  CAS  Google Scholar 

  81. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    Article  CAS  Google Scholar 

  82. Qin S, Qin D, Ford WT, Resasco DE, Herrera JE (2004) Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 373:752–757

    Article  Google Scholar 

  83. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  84. Rizzuto C, Pugliese G, Bahattab MA, Aljlil SA, Drioli E, Tocci E (2018) Multiwalled carbon nanotube membranes for water purification. Sep Purif Technol 193:378–385

    Article  CAS  Google Scholar 

  85. Rodriguez-Yanez Y, Munoz B, Albores A (2013) A mechanisms of toxicity by carbon nanotubes. Toxicol Mech Methods 23:178–195

    Article  CAS  Google Scholar 

  86. Saeed K, Park SY, Haider S, Baek JB (2009) In situ polymerization of multi-walled carbon nanotube/nylon-6 nanocomposites and their electrospun nanofibers. Nano Res Lett 4:1–39

    Article  Google Scholar 

  87. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60:413–550

    Article  CAS  Google Scholar 

  88. Saththasivam J, Yiming W, Wang K, ** J, Liu Z (2018) A novel architecture for carbon nanotube membranes towards fast and efficient oil/water separation. Sci Rep 8:7418

    Article  Google Scholar 

  89. Shawky HA, Chae S, Lin S, Wiesner MR (2011) Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination 272:46–50

    Article  CAS  Google Scholar 

  90. Shaban A, Ashraf AM, AbdAllah H, El-Salam HM (2018) Titanium dioxide nanoribbons/multi-walled carbon nanotube nanocomposite blended polyethersulfone membrane for brackish water desalination. Desalination 444:129–141

    Article  CAS  Google Scholar 

  91. Shulga YM, Tien TC, Huang CC, Lo SC, Muradyan VE, Polyakova NV, Ling YC, Loutfy RO, Moravsky AP (2007) XPS study of fluorinated carbon multi-walled nanotubes. J Electron Spectrosc Rel Phenom 160:22–28

    Article  CAS  Google Scholar 

  92. Spitalsky Z, Aggelopoulos C, Tsoukleri G, Tsakiroglou C, Parthenios J, Georga S, Krontiras C, Tasis D, Papagelis K, Galiotis C (2009) The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films. Mater Sci Eng B 165:135–138

    Article  CAS  Google Scholar 

  93. Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nat Mater 3:610–614

    Article  CAS  Google Scholar 

  94. Tanaka T (2010) Filtration characteristics of carbon nanotubes and preparation of buckypapers. Desalin Water Treat 17:193–198

    Article  CAS  Google Scholar 

  95. Tankus KA, Issman L, Stolov M, Freger V (2018) Electrotreated carbon nanotube membranes for facile oil–water separations. ACS Appl Nano Mater 1:2057–2061

    Article  CAS  Google Scholar 

  96. Thamaraiselvan C, Lerman S, Weinfeld-Cohen K, Dosoretz CG (2018) Characterization of a support-free carbon nanotube-microporous membrane for water and wastewater filtration. Sep Purif Technol 202:1–8

    Article  CAS  Google Scholar 

  97. Tian E, Wang X, Wang X, Ren Y, Zhao Y, An X (2019) Characterization of thin-film nanocomposite membrane with high flux and antibacterial performance for forward osmosis. Ind Eng Chem Res 58:897–907

    Article  CAS  Google Scholar 

  98. Vermisoglou EC, Pilatos G, Romanos GE, Karanikolos GN, Boukos N, Mertis K, Kakizis N, Kanellopoulos NK (2008) Synthesis and characterisation of carbon nanotube modified anodised alumina membranes. Microporous Mesoporous Mater 110:25–36

    Article  CAS  Google Scholar 

  99. Vohrer U, Kolaric I, Haque MH, Roth S, Detlaff-Weglikowska U (2004) Carbon nanotube sheets for the use as artificial muscles. Carbon 42:1159–1164

    Article  CAS  Google Scholar 

  100. Wang Y, Liu Y, Yu Y, Huang H (2018) Influence of CNT-rGO composite structures on their permeability and selectivity for membrane water treatment. J Membr Sci 551:326–332

    Article  CAS  Google Scholar 

  101. Whitby RLD, Fukuda T, Maekawa T, James SL, Mikhalovsky SV (2008) Geometric control and tuneable pore size distribution of bucky paper and bucky discs. Carbon 46:949–956

    Article  CAS  Google Scholar 

  102. Yu Z, ZengG Pan Y, Lv L, Hui M, ZhangL Yie H (2015) Effect of functionalized multi-walled carbon nanotubes on the microstructure and performances of PVDF membranes. RSC Adv 5:75998–76006

    Article  CAS  Google Scholar 

  103. Zhao H, Qiu S, Wu L, Zhang L, Chen H, Gao C (2014) Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J Membr Sci 450:249–256

    Article  CAS  Google Scholar 

  104. Zirehpour A, Rahimpour A, Jahanshahi M, Peyravi M (2014) Mixed matrix membrane application for olive oil wastewater treatment: process optimization based on Taguchi design method. J Environ Manag 132:113–120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Banasthali Vidyapith and the Central University of Gujarat. One of the authors, Dr. Pallavi Jain, is grateful to the SRM Institute of Science and Technology, Delhi-NCR Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Painuli, R., Jain, P., Raghav, S., Kumar, D. (2021). Composition and Arrangement of Carbon-Derived Membranes for Purifying Wastewater. In: Jawaid, M., Ahmad, A., Ismail, N., Rafatullah, M. (eds) Environmental Remediation Through Carbon Based Nano Composites. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6699-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6699-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6698-1

  • Online ISBN: 978-981-15-6699-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation