Artificial Intelligence for Optimizing Edge

  • Chapter
  • First Online:
Edge AI

Abstract

DNNs (general DL models) can extract latent data features, while DRL can learn to deal with decision-making problems by interacting with the environment. Computation and storage capabilities of edge nodes, along with the collaboration of the cloud, make it possible to use DL to optimize edge computing networks and systems. With regard to various edge management issues such as edge caching, offloading, communication, security protection, etc., (1) DNNs can process user information and data metrics in the network, as well as perceiving the wireless environment and the status of edge nodes, and based on these information, (2) DRL can be applied to learn the long-term optimal resource management and task scheduling strategies, so as to achieve the intelligent management of the edge, viz. intelligent edge as shown in Tables 8.1, 8.2, and 8.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 166.39
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 166.39
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hofmann, L. Beaumont, Chapter 3 – caching techniques for web content, in Content Networking (2005), pp. 53–79

    Google Scholar 

  2. X. Wang, M. Chen, T. Taleb et al., Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2), 131–139 (2014)

    Article  Google Scholar 

  3. E. Zeydan, E. Bastug, M. Bennis et al., Big data caching for networking: moving from cloud to edge. IEEE Commun. Mag. 54(9), 36–42 (2016)

    Article  Google Scholar 

  4. J. Song, M. Sheng, T.Q.S. Quek et al., Learning-based content caching and sharing for wireless networks. IEEE Trans. Commun. 65(10), 4309–4324 (2017)

    Google Scholar 

  5. X. Li, X. Wang, P.-J. Wan et al., Hierarchical edge caching in device-to-device aided mobile networks: modeling, optimization, and design. IEEE J. Sel. Areas Commun. 36(8), 1768–1785 (2018)

    Article  Google Scholar 

  6. S. Rathore, J.H. Ryu, P.K. Sharma, J.H. Park, DeepCachNet: a proactive caching framework based on deep learning in cellular networks. IEEE Netw. 33(3), 130–138 (2019)

    Article  Google Scholar 

  7. Z. Chang, L. Lei, Z. Zhou et al., Learn to cache: machine learning for network edge caching in the big data era. IEEE Wirel. Commun. 25(3), 28–35 (2018)

    Article  Google Scholar 

  8. J. Yang, J. Zhang, C. Ma et al., Deep learning-based edge caching for multi-cluster heterogeneous networks, in Neural Computing and Applications (2019), pp. 1–12

    Google Scholar 

  9. A. Ndikumana, N.H. Tran, C.S. Hong, Deep learning based caching for self-driving car in multi-access edge computing (2018). Preprint. ar**v:1810.01548

    Google Scholar 

  10. Y. Tang, K. Guo et al., A smart caching mechanism for mobile multimedia in information centric networking with edge computing. Future Gener. Comput. Syst. 91, 590–600 (2019)

    Article  Google Scholar 

  11. C. Zhong, M.C. Gursoy et al., A deep reinforcement learning-based framework for content caching, in 52nd Annual Conference on Information Sciences and Systems (CISS 2018) (2018), pp. 1–6

    Google Scholar 

  12. T. Kanungo, D. M. Mount et al., An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  13. D. Adelman, A.J. Mersereau, Relaxations of weakly coupled stochastic dynamic programs. Oper. Res. 56(3), 712–727 (2008)

    Article  MathSciNet  Google Scholar 

  14. H. Zhu, Y. Cao, W. Wang et al., Deep reinforcement learning for mobile edge caching: review, new features, and open issues. IEEE Netw. 32(6), 50–57 (2018)

    Article  Google Scholar 

  15. K. Guo, C. Yang, T. Liu, Caching in base station with recommendation via Q-learning, in 2017 IEEE Wireless Communications and Networking Conference (WCNC 2017) (2017), pp. 1–6

    Google Scholar 

  16. G. Dulac-Arnold, R. Evans, H. van Hasselt et al., Deep reinforcement learning in large discrete action spaces (2015). Preprint. ar**v:1512.07679

    Google Scholar 

  17. P. Mach, Z. Becvar, Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surveys Tuts. 19(3), 1628–1656 (2017). Thirdquarter

    Google Scholar 

  18. X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2016)

    Article  Google Scholar 

  19. J. Xu, L. Chen et al., Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Trans. on Cogn. Commun. Netw. 3(3), 361–373 (2017)

    Article  Google Scholar 

  20. T.Q. Dinh, Q.D. La, T.Q.S. Quek, H. Shin, Distributed learning for computation offloading in mobile edge computing. IEEE Trans. Commun. 66(12), 6353–6367 (2018)

    Article  Google Scholar 

  21. T. Chen, G.B. Giannakis, Bandit convex optimization for scalable and dynamic IoT management. IEEE Internet Things J. 6(1), 1276–1286 (2019)

    Article  Google Scholar 

  22. K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, Y. Zhang, Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet Things J. 6(5), 7635–7647 (2019)

    Article  Google Scholar 

  23. S. Yu, X. Wang, R. Langar, Computation offloading for mobile edge computing: a deep learning approach, in IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2017) (2017), pp. 1–6

    Google Scholar 

  24. T. Yang, Y. Hu, M.C. Gursoy et al., Deep reinforcement learning based resource allocation in low latency edge computing networks, in 15th International Symposium on Wireless Communication Systems (ISWCS 2018) (2018), pp. 1–5

    Google Scholar 

  25. X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, M. Bennis, Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet Things J. 6(3), 4005–4018 (2019)

    Article  Google Scholar 

  26. N.C. Luong, Z. **ong, P. Wang, D. Niyato, Optimal auction for edge computing resource management in mobile blockchain networks: a deep learning approach, in 2018 IEEE International Conference on Communications (ICC 2018) (2018), pp. 1–6

    Google Scholar 

  27. J. Li, H. Gao, T. Lv, Y. Lu, Deep reinforcement learning based computation offloading and resource allocation for MEC, in 2018 IEEE Wireless Communications and Networking Conference (WCNC 2018) (2018), pp. 1–6

    Google Scholar 

  28. M. Min, L. **ao, Y. Chen et al., Learning-based computation offloading for IoT devices with energy harvesting. IEEE Trans. Veh. Technol. 68(2), 1930–1941 (2019)

    Article  Google Scholar 

  29. Z. Chen, X. Wang, Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach (2018). Preprint. ar**v:1812.07394

    Google Scholar 

  30. T. Chen et al., Harnessing bandit online learning to low-latency fog computing, in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018) (2018), pp. 6418–6422

    Google Scholar 

  31. Q. Zhang, M. Lin, L.T. Yang, Z. Chen, S.U. Khan, P. Li, A double deep q-learning model for energy-efficient edge scheduling. IEEE Trans. Serv. Comput. 12(05), 739–749 (2019)

    Article  Google Scholar 

  32. L. Huang, S. Bi, Y.-j.A. Zhang, Deep reinforcement learning for online offloading in wireless powered mobile-edge computing networks (2018). Preprint. ar**v:1808.01977

    Google Scholar 

  33. D.C. Nguyen, P.N. Pathirana, M. Ding, A. Seneviratne, Secure computation offloading in blockchain based IoT networks with deep reinforcement learning (2018). Preprint. ar**v:1908.07466

    Google Scholar 

  34. H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double Q-learning, in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI 2016) (2016), pp. 2094–2100

    Google Scholar 

  35. C.-Y. Li, H.-Y. Liu et al., Mobile edge computing platform deployment in 4G LTE networks: a middlebox approach, in {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 2018) (2018)

    Google Scholar 

  36. Q. Mao, F. Hu, Q. Hao, Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun. Surveys Tuts. 20(4), 2595–2621 (2018). Fourthquarter

    Google Scholar 

  37. R. Li, Z. Zhao, X. Zhou et al., Intelligent 5g: when cellular networks meet artificial intelligence. IEEE Wireless Commun. 24(5), 175–183 (2017)

    Article  Google Scholar 

  38. X. Chen, J. Wu, Y. Cai et al., “Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 33(4), 627–640 (2015)

    Article  Google Scholar 

  39. S. Memon et al., Using machine learning for handover optimization in vehicular fog computing, in Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (SAC 2019) (2019), pp. 182–190

    Google Scholar 

  40. Y. Sun, M. Peng, S. Mao, Deep reinforcement learning-based mode selection and resource management for green fog radio access networks. IEEE Internet Things J. 6(2), 1960–1971 (2019)

    Article  Google Scholar 

  41. L. **ao, X. Wan, C. Dai et al., Security in mobile edge caching with reinforcement learning. IEEE Wireless Commun. 25(3), 116–122 (2018)

    Article  Google Scholar 

  42. Y. He, N. Zhao et al., Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 67(1), 44–55 (2018)

    Article  Google Scholar 

  43. Y. Wei, F.R. Yu, M. Song, Z. Han, Joint optimization of caching, computing, and radio resources for fog-enabled IoT using natural actor–critic deep reinforcement learning. IEEE Internet Things J. 6(2), 2061–2073 (2019)

    Article  Google Scholar 

  44. L.T. Tan, R.Q. Hu, Mobility-aware edge caching and computing in vehicle networks: a deep reinforcement learning. IEEE Trans. Veh. Technol. 67(11), 10190–10203 (2018)

    Article  Google Scholar 

  45. R. Dong, C. She, W. Hardjawana, Y. Li, B. Vucetic, Deep learning for hybrid 5G services in mobile edge computing systems: learn from a digital twin. IEEE Trans. Wirel. Commun. 18(10), 4692–4707 (2019)

    Article  Google Scholar 

  46. Y. Chen, Y. Zhang, S. Maharjan, M. Alam, T. Wu, Deep learning for secure mobile edge computing in cyber-physical transportation systems. IEEE Netw. 33(4), 36–41 (2019)

    Article  Google Scholar 

  47. M. Min, X. Wan, L. **ao et al., Learning-based privacy-aware offloading for healthcare IoT with energy harvesting. IEEE Internet Things J. 6, 4307–4316 (2018)

    Article  Google Scholar 

  48. T.E. Bogale, X. Wang, L.B. Le, Machine intelligence techniques for next-generation context-aware wireless networks (2018). Preprint. ar**v:1801.04223

    Google Scholar 

  49. S. Wang, X. Zhang, Y. Zhang et al., A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access 5, 6757–6779 (2017)

    Article  Google Scholar 

  50. D. Kreutz et al., Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  51. Y. He, F.R. Yu, N. Zhao et al., Software-defined networks with mobile edge computing and caching for smart cities: a big data deep reinforcement learning approach. IEEE Commun. Mag. 55(12), 31–37 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Han, Y., Leung, V.C.M., Niyato, D., Yan, X., Chen, X. (2020). Artificial Intelligence for Optimizing Edge. In: Edge AI. Springer, Singapore. https://doi.org/10.1007/978-981-15-6186-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6186-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6185-6

  • Online ISBN: 978-981-15-6186-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation