Edge Computing for Artificial Intelligence

  • Chapter
  • First Online:
Edge AI

Abstract

Extensive deployment of AI services, especially mobile AI, requires the support of edge computing. This support is not just at the network architecture level, the design, adaptation, and optimization of edge hardware and software are equally important. Specifically, (1) customized edge hardware and corresponding optimized software frameworks and libraries can help AI execution more efficiently; (2) the edge computing architecture can enable the offloading of AI computation; (3) well-designed edge computing frameworks can better maintain AI services running on the edge; (4) fair platforms for evaluating Edge AI performance help further evolve the above implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Du et al., A reconfigurable streaming deep convolutional neural network accelerator for Internet of Things. IEEE Trans. Circuits Syst. Regul. Pap. 65(1), 198–208 (2018)

    Article  Google Scholar 

  2. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition (2014). Preprint. ar**v:1409.1556

    Google Scholar 

  3. L.N. Huynh, Y. Lee, R.K. Balan, DeepMon: mobile GPU-based deep learning framework for continuous vision applications, in Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys 2017) (2017), pp. 82–95

    Google Scholar 

  4. Y. Chen, S. Biookaghazadeh, M. Zhao, Exploring the capabilities of mobile devices supporting deep learning, in Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2018) (2018), pp. 17–18

    Google Scholar 

  5. R. Venkatesan, B. Li, Diving deeper into mentee networks (2016). Preprint. ar**v:1604.08220

    Google Scholar 

  6. S. Han, Y. Wang, H. Yang et al., ESE: efficient speech recognition engine with sparse LSTM on FPGA, in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA 2017) (2017), pp. 75–84

    Google Scholar 

  7. S. Jiang, D. He, C. Yang et al., Accelerating mobile applications at the network edge with software-programmable FPGAs, in 2018 IEEE Conference on Computer Communications (INFOCOM 2018) (2018), pp. 55–62

    Google Scholar 

  8. S. Biookaghazadeh, F. Ren, M. Zhao, Are FPGAs suitable for edge computing? (2018). Preprint. ar**v:1804.06404

    Google Scholar 

  9. D. McAuley, R. Mortier, J. Goulding, The dataware manifesto, in 2011 Third International Conference on Communication Systems and Networks (COMSNETS 2011) (2011), pp. 1–6

    Google Scholar 

  10. S. Agarwal, M. Philipose, P. Bahl, Vision: the case for cellular small cells for cloudlets, in Proceedings of The International Workshop on Mobile Cloud Computing & Services (2014), pp. 1–5

    Google Scholar 

  11. M. Chao, C. Yang, Y. Zeng, R. Stoleru, F-Mstorm: feedback-based online distributed mobile stream processing, in 2018 Third ACM/IEEE Symposium on Edge Computing (2018), pp. 273–285

    Google Scholar 

  12. R.B. Das, G. Di Bernardo, H. Bal, Large stream analytics using a resource-constrained edge, in 2018 IEEE International Conference on Edge Computing (2018), pp. 135–139

    Google Scholar 

  13. H.P. Sajjad, K. Danniswara, A. Al-Shishtawy, V. Vlassov, SpanEdge: towards unifying stream processing over central and near-the-edge data centers, in 2016 IEEE/ACM Symposium on Edge Computing (SEC) (2016), pp. 168–178

    Google Scholar 

  14. Q. Zhang, Q. Zhang, W. Shi, H. Zhong, Firework: data processing and sharing for hybrid cloud-edge analytics. IEEE Trans. Parallel Distrib. Syst. 29(9), 2004–2017 (2018)

    Article  Google Scholar 

  15. X. Ran, H. Chen, X. Zhu, Z. Liu, J. Chen, DeepDecision: a mobile deep learning framework for edge video analytics, in 2018 IEEE Conference on Computer Communications (INFOCOM 2018) (2018), pp. 1421–1429

    Google Scholar 

  16. W. Zhang, Z. Zhang, S. Zeadally et al., MASM: a multiple-algorithm service model for energy-delay optimization in edge artificial intelligence. IEEE Trans. Ind. Inf. 15, 4216–4224 (2019)

    Article  Google Scholar 

  17. P. Liu, B. Qi, S. Banerjee, EdgeEye – an edge service framework for real-time intelligent video analytics, in Proceedings of the 1st International Workshop on Edge Systems, Analytics and Networking (EdgeSys 2018) (2018), pp. 1–6

    Google Scholar 

  18. M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, X. Liu, DeepWear: adaptive local offloading for on-wearable deep learning. IEEE Trans. Mob. Comput. 19, 314–330 (2019)

    Article  Google Scholar 

  19. H.-j. Jeong, H.-j. Lee, C.H. Shin, S.-M. Moon, IONN: incremental offloading of neural network computations from mobile devices to edge servers, in Proceedings of the ACM Symposium on Cloud Computing (SoCC 2018) (2018), pp. 401–411

    Google Scholar 

  20. E. Cuervo, A. Balasubramanian, D.-k. Cho et al., MAUI: making smartphones last longer with code offload, in Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys 2010) (2010), pp. 49–62

    Google Scholar 

  21. Y. Huang, X. Ma, X. Fan et al., When deep learning meets edge computing, in IEEE 25th International Conference on Network Protocols (ICNP 2017) (2017), pp. 1–2

    Google Scholar 

  22. Y. Kang, J. Hauswald, C. Gao et al., Neurosurgeon: collaborative intelligence between the cloud and mobile edge, in Proceedings of 22nd International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2017) (2017), pp. 615–629

    Google Scholar 

  23. S. Teerapittayanon, B. McDanel, H.T. Kung, Distributed deep neural networks over the cloud, the edge and end devices, in IEEE 37th International Conference on Distributed Computing Systems (ICDCS 2017) (2017), pp. 328–339

    Google Scholar 

  24. J. Ren, Y. Guo, D. Zhang et al., Distributed and efficient object detection in edge computing: challenges and solutions. IEEE Netw. 32(6), 137–143 (2018)

    Article  Google Scholar 

  25. C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl, M. Philipose, VideoEdge: processing camera streams using hierarchical clusters, in Proceedings of 2018 IEEE/ACM Symposium on Edge Computing (SEC 2018) (2018), pp. 115–131

    Google Scholar 

  26. J. Mao, X. Chen, K.W. Nixon et al., MoDNN: local distributed mobile computing system for Deep Neural Network, in Design, Automation & Test in Europe Conference & Exhibition (DATE 2017) (2017), pp. 1396–1401

    Google Scholar 

  27. M. Alwani, H. Chen, M. Ferdman, P. Milder, Fused-layer CNN accelerators, in 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2016) (2016), pp. 1–12

    Google Scholar 

  28. Z. Zhao, K.M. Barijough, A. Gerstlauer, DeepThings: distributed adaptive deep learning inference on resource-constrained IoT edge clusters. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(11), 2348–2359 (2018)

    Article  Google Scholar 

  29. D. Li, T. Salonidis, N.V. Desai, M.C. Chuah, DeepCham: collaborative edge-mediated adaptive deep learning for mobile object recognition, in Proceedings of the First ACM/IEEE Symposium on Edge Computing (SEC 2016) (2016), pp. 64–76

    Google Scholar 

  30. S. Yi, Z. Hao, Q. Zhang et al., LAVEA: latency-aware video analytics on edge computing platform, in Proceedings of the Second ACM/IEEE Symposium on Edge Computing (SEC 2017) (2017), pp. 1–13

    Google Scholar 

  31. X. Xu, Y. Ding, S.X. Hu, M. Niemier, J. Cong, Y. Hu, Y. Shi, Scaling for edge inference of deep neural networks. Nat. Elect. 1(4), 216–222 (2018)

    Article  Google Scholar 

  32. M. Polese, R. Jana, V. Kounev et al., Machine learning at the edge: a data-driven architecture with applications to 5G cellular networks (2018). Preprint. ar**v:1808.07647

    Google Scholar 

  33. L. Lai et al., Rethinking machine learning development and deployment for edge devices (2018). Preprint. ar**v:1806.07846

    Google Scholar 

  34. P. Meloni, O. Ripolles, D. Solans et al., ALOHA: an architectural-aware framework for deep learning at the edge, in Proceedings of the Workshop on INTelligent Embedded Systems Architectures and Applications (INTESA 2018) (2018), pp. 19–26

    Google Scholar 

  35. X. Zhang, Y. Wang, S. Lu, L. Liu, L. Xu, W. Shi, OpenEI: an open framework for edge intelligence (2019). Preprint. ar**v:1906.01864

    Google Scholar 

  36. J. Zhao, T. Tiplea, R. Mortier, J. Crowcroft, L. Wang, Data analytics service composition and deployment on IoT devices, in Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys 2018) (2018), pp. 502–504

    Google Scholar 

  37. N. Talagala, S. Sundararaman, V. Sridhar, D. Arteaga, Q. Luo, S. Subramanian, S. Ghanta, L. Khermosh, D. Roselli, ECO: harmonizing edge and cloud with ml/dl orchestration, in USENIX Workshop on Hot Topics in Edge Computing (HotEdge 2018) (2018)

    Google Scholar 

  38. X. Zhang, Y. Wang, W. Shi, pCAMP: performance comparison of machine learning packages on the edges, in {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 2018) (2018)

    Google Scholar 

  39. A. Ignatov, R. Timofte, W. Chou et al., AI benchmark: running deep neural networks on android smartphones (2018). Preprint. ar**v:1810.01109

    Google Scholar 

  40. C. Andrés Ramiro, C. Fiandrino, A. Blanco Pizarro et al., openLEON: an end-to-end emulator from the edge data center to the mobile users carlos, in Proceedings of the 12th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization (WiNTECH 2018) (2018), pp. 19–27

    Google Scholar 

  41. Y. Wang, S. Liu, X. Wu, W. Shi, CAVBench: a benchmark suite for connected and autonomous vehicles, in 2018 IEEE/ACM Symposium on Edge Computing (SEC 2018) (2018), pp. 30–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Han, Y., Leung, V.C.M., Niyato, D., Yan, X., Chen, X. (2020). Edge Computing for Artificial Intelligence. In: Edge AI. Springer, Singapore. https://doi.org/10.1007/978-981-15-6186-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6186-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6185-6

  • Online ISBN: 978-981-15-6186-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation