Fundamentals of Edge Computing

  • Chapter
  • First Online:
Edge AI

Abstract

Edge computing has become an important solution to break the bottleneck of emerging technologies by virtue of its advantages of reducing data transmission, improving service latency, and easing cloud computing pressure. At the same time, the emergence of edge computing has spawned a large number of new technologies and promoted the updating and application of some existing technologies, such as the improvement of end device hardware capabilities and the expansion of application scenarios of virtualization technologies. The edge computing architecture will become an important complement to the cloud, even replacing the role of the cloud in some scenarios. However, the status of cloud computing will not be completely replaced by edge computing, because cloud computing can process some computation-intensive tasks that edge devices cannot deal with, relying on its rich computing power and storage resources. Therefore, the combination of cloud computing and edge computing can satisfy the requirements of more diverse application scenarios and bring a more convenient experience to users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Satyanarayanan, P. Bahl, R. Cáceres, N. Davies, The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

    Article  Google Scholar 

  2. M. Aazam, E. Huh, Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT, in Proceedings of the IEEE 29th International Conference on Advanced Information Networking and Applications (AINA 2019) (2015), pp. 687–694

    Google Scholar 

  3. F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the Internet of Things, in Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (2012), pp. 13–16

    Google Scholar 

  4. F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog Computing: A Platform for Internet of Things and Analytics (Springer, Cham, 2014), pp. 169–186

    Google Scholar 

  5. Mobile-Edge Computing—Introductory Technical White Paper, ETSI. https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing-IntroductoryTechnicalWhitePaperV1%2018-09-14.pdf

  6. Multi-access Edge Computing. http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing

  7. K. Bilal, O. Khalid, A. Erbad, S.U. Khan, Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers. Comput. Netw. 130(2018), 94–120 (2018)

    Article  Google Scholar 

  8. Openfog reference architecture for fog computing. https://www.openfogconsortium.org/ra/

  9. Y. Kang, J. Hauswald, C. Gao et al., Neurosurgeon: collaborative intelligence between the cloud and mobile edge, in Proceedings of the 22nd International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2017) (2017), pp. 615–629

    Google Scholar 

  10. G. Li, L. Liu, X. Wang et al., Auto-tuning neural network quantization framework for collaborative inference between the cloud and edge, in Proceedings of the International Conference on Artificial Neural Networks (ICANN 2018) (2018), pp. 402–411

    Google Scholar 

  11. Y. Huang, Y. Zhu, X. Fan et al., Task scheduling with optimized transmission time in collaborative cloud-edge learning, in Proceedings of the 27th International Conference on Computer Communication and Networks (ICCCN 2018) (2018), pp. 1–9

    Google Scholar 

  12. What is Azure Data Box Edge? https://docs.microsoft.com/zh-cn/azure/databox-online/data-box-edge-overview

  13. An all-scenario AI infrastructure solution that bridges ‘device, edge, and cloud’ and delivers unrivaled compute power to lead you towards an AI-fueled future. https://e.huawei.com/en/solutions/business-needs/data-center/atlas

  14. Snapdragon 8 Series Mobile Platforms. https://www.qualcomm.com/products/snapdragon-8-series-mobile-platforms

  15. Kirin. http://www.hisilicon.com/en/Products/ProductList/Kirin

  16. The World’s First Full-Stack All-Scenario AI Chip. http://www.hisilicon.com/en/Products/ProductList/Ascend

  17. MediaTek Helio P60. https://www.mediatek.com/products/smartphones/mediatek-helio-p60

  18. NVIDIA Turing GPU Architecture. https://www.nvidia.com/en-us/geforce/turing/

  19. N.P. Jouppi, A. Borchers, R. Boyle, P.L. Cantin, B. Nan, In-datacenter performance analysis of a tensor processing unit, in Proceedings of the 44th International Symposium on Computer Architecture (ISCA 2017) (2017), pp. 1–12

    Google Scholar 

  20. Y. **ong, Y. Sun, L. **ng, Y. Huang, Extend cloud to edge with KubeEdge, in Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing (SEC 2018) (2018), pp. 373–377

    Google Scholar 

  21. OpenEdge, extend cloud computing, data and service seamlessly to edge devices. https://github.com/baidu/openedge

  22. Azure IoT Edge, extend cloud intelligence and analytics to edge devices. https://github.com/Azure/iotedge

  23. EdgeX, the Open Platform for the IoT Edge. https://www.edgexfoundry.org/

  24. Akraino Edge Stack. https://www.lfedge.org/projects/akraino/

  25. E. Nurvitadhi, G. Venkatesh, J. Sim et al., Can FPGAs beat GPUs in accelerating next-generation deep neural networks? in Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA 2017) (2017), pp. 5–14

    Google Scholar 

  26. S. Jiang, D. He, C. Yang et al., Accelerating mobile applications at the network edge with software-programmable FPGAs, in 2018 IEEE Conference on Computer Communications (INFOCOM 2018) (2018), pp. 55–62

    Google Scholar 

  27. A. Ignatov, R. Timofte, W. Chou et al., AI benchmark: running deep neural networks on android smartphones (2018). ar**v:1810.01109

    Google Scholar 

  28. D. Bernstein, Containers and cloud: from LXC to Docker to Kubernetes. IEEE Cloud Comput. 1(3), 81–84 (2014)

    Article  Google Scholar 

  29. Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit. https://github.com/microsoft/CNTK

  30. S. Tokui, K. Oono et al., Chainer: a next-generation open source framework for deep learning, in Proceedings of the Workshop on Machine Learning Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2015) (2015), pp. 1–6

    Google Scholar 

  31. M. Abadi, P. Barham et al., TensorFlow: a system for large-scale machine learning, in Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI 2016) (2016), pp. 265–283

    Google Scholar 

  32. Deeplearning4j: Open-source distributed deep learning for the JVM, Apache Software Foundation License 2.0. https://deeplearning4j.org

  33. Deploy machine learning models on mobile and IoT devices. https://www.tensorflow.org/lite

  34. T. Chen, M. Li, Y. Li et al., MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems (2015). ar**v:1512.01274

    Google Scholar 

  35. PyTorch: tensors and dynamic neural networks in Python with strong GPU acceleration. https://github.com/pytorch/

  36. Core ML: Integrate machine learning models into your app. https://developer.apple.com/documentation/coreml?language=objc

  37. NCNN is a high-performance neural network inference framework optimized for the mobile platform. https://github.com/Tencent/ncnn

  38. MNN is a lightweight deep neural network inference engine. https://github.com/alibaba/MNN

  39. Multi-platform embedded deep learning framework. https://github.com/PaddlePaddle/paddle-mobile

  40. MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms. https://github.com/**aoMi/mace

  41. X. Wang, M. Magno, L. Cavigelli, L. Benini, FANN-on-MCU: an open-source toolkit for energy-efficient neural network inference at the edge of the Internet of Things (2019). ar**v:1911.03314

    Google Scholar 

  42. Z. Tao, Q. **a, Z. Hao, C. Li, L. Ma, S. Yi, Q. Li, A survey of virtual machine management in edge computing. Proc. IEEE 107(8), 1482–1499 (2019)

    Article  Google Scholar 

  43. R. Morabito, Virtualization on internet of things edge devices with container technologies: a performance evaluation. IEEE Access 5, 8835–8850 (2017)

    Article  Google Scholar 

  44. L. Ma, S. Yi, N. Carter, Q. Li, Efficient live migration of edge services leveraging container layered storage. IEEE Trans. Mob. Comput. 18(9), 2020–2033 (2019)

    Article  Google Scholar 

  45. A. Wang, Z. Zha, Y. Guo, S. Chen, Software-defined networking enhanced edge computing: a network-centric survey. Proc. IEEE 107(8), 1500–1519 (2019)

    Article  Google Scholar 

  46. Y.D. Lin, C.C. Wang, C.Y. Huang, Y. C. Lai, Hierarchical CORD for NFV datacenters: resource allocation with cost-latency tradeoff. IEEE Netw. 32(5), 124–130 (2018)

    Article  Google Scholar 

  47. L. Li, K. Ota, M. Dong, DeepNFV: A lightweight framework for intelligent edge network functions virtualization. IEEE Netw. 33(1), 136–141 (2019)

    Article  Google Scholar 

  48. Mobile Edge Computing A key technology towards 5G, ETSI. https://www.etsi.org/images/files/ETSIWhitePapers/etsiwp11mecakeytechnologytowards5g.pdf

  49. H.-T. Chien, Y.-D. Lin, C.-L. Lai, C.-T. Wang, End-to-end slicing as a service with computing and communication resource allocation for multi-tenant 5G systems. IEEE Wirel. Commun. 26(5), 104–112 (2019)

    Article  Google Scholar 

  50. T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella, On multi-access edge computing: a survey of the emerging 5g network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutorials 19(3), 1657–1681 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Han, Y., Leung, V.C.M., Niyato, D., Yan, X., Chen, X. (2020). Fundamentals of Edge Computing. In: Edge AI. Springer, Singapore. https://doi.org/10.1007/978-981-15-6186-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6186-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6185-6

  • Online ISBN: 978-981-15-6186-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation