Hybrid Image Processing-Based Examination of 2D Brain MRI Slices to Detect Brain Tumor/Stroke Section: A Study

  • Chapter
  • First Online:
Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems

Abstract

In human physiology, the brain is the most important internal organ, and a disease in the brain affects the individual severely and the untreated disease will lead to death. In the brain, tumor as well as ischemic stroke is the leading cause of death/permanent disability in elderly. The clinical-level diagnosis of this disease is normally carried with the well-known imaging technique called magnetic resonance imaging (MRI) due to its multimodality and proven nature. Radiology helps to generate a 3D structure of the MRI and from which the 2D slices are extracted and examined to detect the abnormality. Further, the examination of 2D slices is quite simple compared to the 3D image. This work implements a hybrid imaging technique by considering the thresholding and segmentation techniques. Thresholding helped to improve the visibility of the abnormal part, and this thresholding is executed with the brain storm optimization-based Otsu’s/Kapur’s function. Later, the abnormal part from this image is extracted using the chosen segmentation technique. In this work, a detailed assessment of the existing segmentation procedures, such as watershed, active contour, level set and region growing, is presented. Finally, a study with the ground truth and extracted part is executed, and based on the Jaccard, Dice, and accuracy, the performance of the proposed technique is validated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Louis DN et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  2. El-Dahshan, E.S.A, Mohsen, H.M., Revett, K. et al. (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl, vol.41, no.11, pp.5526–5545

    Google Scholar 

  3. Amin J, Sharif M, Yasmin M et al (2018) Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst 87:290–297

    Article  Google Scholar 

  4. Fernandes SL et al (2019) A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput Appl:1–12. https://doi.org/10.1007/s00521-019-04369-5

  5. Dey N et al (2019) Social-group-optimization based tumor evaluation tool for clinical brain MRI of flair/diffusion-weighted modality. Biocybern Biomed Eng 39(3):843–856. https://doi.org/10.1016/j.bbe.2019.07.005

    Article  Google Scholar 

  6. Pugalenthi R et al (2019) Evaluation and classification of the brain tumor MRI using machine learning technique. Control Eng Appl Inf 21(4):12–21

    Google Scholar 

  7. Satapathy SC, Ra**ikanth V (2018) Jaya algorithm guided procedure to segment tumor from brain MRI. J Opt 2018:12. https://doi.org/10.1155/2018/3738049

    Article  Google Scholar 

  8. He T, Pamela MB, Shi F (2016) Curvature manipulation of the spectrum of a valence–arousal-related fMRI dataset using a Gaussian-shaped fast fourier transform and its application to fuzzy KANSEI adjective modeling. Neurocomputing 174:1049–1059

    Article  Google Scholar 

  9. Hore S, Chakroborty S, Ashour AS, Dey N, Ashour AS, Sifakipistolla D, Bhattacharya T, Bhadra Chaudhuri SR (2015) Finding contours of hippocampus brain cell using microscopic image analysis. J Adv Microsc Res 10(2):93–103

    Article  Google Scholar 

  10. Kovalev V, Kruggel F (2007) Texture anisotropy of the brain’s white matter as revealed by anatomical MRI. IEEE Trans Med Imaging 26(5):678–685

    Article  Google Scholar 

  11. Liu M, Zhang J, Nie D et al (2018) Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J Biomed Health 22(5):1476–1485

    Article  Google Scholar 

  12. Gudigar A, Raghavendra U, San TR, Ciaccio EJ, Acharya UR (2019) Application of multiresolution analysis for automated detection of brain abnormality using MR images: a comparative study. Futur Gener Comput Syst 90:359–367

    Article  Google Scholar 

  13. Buda M et al (2019) Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput Biol Med 109:218–225. https://doi.org/10.1016/j.compbiomed.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  14. Sharif M, Tanvir U, Munir EU, Khan MA, Yasmin M (2018) Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-1075-x

  15. Moldovanu S, Moraru L, Biswas A (2016) Edge-based structural similarity analysis in brain MR images. J Med Imaging Health Inf 6:1–8

    Article  Google Scholar 

  16. Tatla SK, Radomski A, Cheung J, Maron M, Jarus T (2012) Wii-habilitation as balance therapy for children with acquired brain injury. Dev Neurorehabil:1–15. http://www.ncbi.nlm.nih.gov/pubmed/23231377

  17. Sullivan JR, Riccio CA (2010) Language functioning and deficits following pediatric traumatic brain injury. Appl Neuropsychol 17(2):93–98. http://www.ncbi.nlm.nih.gov/pubmed/20467948

    Article  Google Scholar 

  18. McKinlay A, Grace RC, Horwood LJ, Fergusson DM, Ridder EM, MacFarlane MR (2008) Prevalence of traumatic brain injury among children, adolescents and young adults: prospective evidence from a birth cohort. Brain Inj 22(2):175–181. http://www.ncbi.nlm.nih.gov/pubmed/18240046

    Article  CAS  Google Scholar 

  19. Ra**ikanth V, Dey N, Satapathy SC, Ashour AS (2018) An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Futur Gener Comput Syst 85:160–172

    Article  Google Scholar 

  20. Acharya UR et al (2019) Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques. J Med Syst 43(9):302. https://doi.org/10.1007/s10916-019-1428-9

    Article  PubMed  Google Scholar 

  21. Jahmunah V et al (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698. https://doi.org/10.1016/j.artmed.2019.07.006

    Article  CAS  PubMed  Google Scholar 

  22. Ra**ikanth V, Satapathy SC, Fernandes SL, Nachiappan S (2017) Entropy based segmentation of tumor from brain MR images – a study with teaching learning based optimization. Pattern Recogn Lett 94:87–95. https://doi.org/10.1016/j.patrec.2017.05.028

    Article  Google Scholar 

  23. Ra**ikanth V, Satapathy SC, Dey N, Lin H (2018) Evaluation of ischemic stroke region from CT/MR images using hybrid image processing techniques. In: Intelligent multidimensional data and image processing, pp 194–219. https://doi.org/10.4018/978-1-5225-5246-8.ch007

    Chapter  Google Scholar 

  24. Palani TK, Parvathavarthini B, Chitra K (2016) Segmentation of brain regions by integrating meta heuristic multilevel threshold with Markov random field. Curr Med Imaging Rev 12(1):4–12

    Article  Google Scholar 

  25. Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  Google Scholar 

  26. Brain Tumour Database (BraTS-MICCAI). http://hal.inria.fr/hal-00935640. Accessed 20 Aug 2019

  27. Maier O, Wilms M, Von der Gablentz J, Krämer UM, Münte TF, Handels H (2015) Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods 240:89–100. https://doi.org/10.1016/j.jneumeth.2014.11.011

    Article  PubMed  Google Scholar 

  28. Maier O et al (2017) ISLES 2015 – a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal 35:250–269

    Article  Google Scholar 

  29. Tandel GS et al (2019) A review on a deep learning perspective in brain cancer classification. Cancers (Basel) 11(1):111. https://doi.org/10.3390/cancers11010111

    Article  Google Scholar 

  30. Nadeem MW et al (2020) Brain tumor analysis empowered with deep learning: a review, taxonomy, and future challenges. Brain Sci 10(2):E118. https://doi.org/10.3390/brainsci10020118

    Article  PubMed  Google Scholar 

  31. Roopini TI, Vasanthi M, Ra**ikanth V, Rekha M, Sangeetha M (2018) Segmentation of tumor from brain MRI using fuzzy entropy and distance regularised level set. Lect Notes Electr Eng 490:297–304. https://doi.org/10.1007/978-981-10-8354-9_27

    Article  Google Scholar 

  32. Manic KS, Hasoon FA, Shibli NA, Satapathy SC, Ra**ikanth V (2019) An approach to examine brain tumor based on Kapur’s entropy and Chan–Vese algorithm. AISC 797:901–909

    Google Scholar 

  33. Ra**ikanth V, Satapathy SC, Dey N, Lin H (2018) Evaluation of ischemic stroke region from CT/MR images using hybrid image processing techniques. Intell Multidimens Data Image Process:194–219. https://doi.org/10.4018/978-1-5225-5246-8.ch007

  34. Ra**ikanth V, Fernandes SL, Bhushan B, Sunder NR (2018) Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set. Lect Notes Electr Eng 434:313–321

    Article  Google Scholar 

  35. Revanth K et al (2018) Computational investigation of stroke lesion segmentation from flair/DW modality MRI. In: Fourth international conference on Biosignals, Images and Instrumentation (ICBSII), IEEE 206–212. https://doi.org/10.1109/icbsii.2018.8524617

  36. Ra**ikanth V, Raja NSM, Kamalanand K (2017) Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field. J Control Eng Appl Inform 19(3):97–106

    Google Scholar 

  37. Kanchana R, Menaka R (2015) Computer reinforced analysis for ischemic stroke recognition: a review. Indian J Sci Technol 8(35):81006

    Article  Google Scholar 

  38. Usinskas A, Gleizniene R (2006) Ischemic stroke region recognition based on ray tracing. In: Proceedings of international baltic electronics conference. https://doi.org/10.1109/BEC.2006.311103

  39. Tang F-H, Ng DKS, Chow DHK (2011) An image feature approach for computer-aided detection of ischemic stroke. Comput Biol Med 41:529–536

    Article  Google Scholar 

  40. Ra**i NH, Bhavani R (2013) Computer aided detection of ischemic stroke using segmentation and texture features. Measurement 46:1865–1874

    Article  Google Scholar 

  41. Ra**ikanth V, Thanaraj PK, Satapathy SC, Fernandes SL, Dey N (2019) Shannon’s entropy and watershed algorithm based technique to inspect ischemic stroke wound. SIST 105:23–31. https://doi.org/10.1007/978-981-13-1927-3_3

    Article  Google Scholar 

  42. Raja NSM et al (2019) A study on segmentation of leukocyte image with Shannon’s entropy. Histopathol Image Anal Med Decis Mak:1–27. https://doi.org/10.4018/978-1-5225-6316-7.ch001

  43. Ra**ikanth V, Dey N, Kavallieratou E, Lin H (2020) Firefly algorithm-based Kapur’s thresholding and Hough transform to extract leukocyte section from hematological images. Applications of firefly algorithm and its variants: case studies and new developments, pp 221–235. https://doi.org/10.1007/978-981-15-0306-1_10

  44. Ra**ikanth V, Dey N, Satapathy SC, Kamalanand K (2020) Inspection of crop-weed image database using Kapur’s entropy and spider monkey optimization. Adv Intell Syst Comput 1048:405–414. https://doi.org/10.1007/978-981-15-0035-0_32

    Article  Google Scholar 

  45. Ra**ikanth V, Raja NSM, Satapathy SC, Dey N, Devadhas GG (2018) Thermogram assisted detection and analysis of ductal carcinoma in situ (DCIS). In: International conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), IEEE 1641–1646. https://doi.org/10.1109/icicict1.2017.8342817

  46. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  47. Raj SPS et al (2018) Examination of digital mammogram using Otsu’s function and watershed segmentation. In: Fourth international conference on Biosignals, Images and Instrumentation (ICBSII), IEEE 206–212. https://doi.org/10.1109/ICBSII.2018.8524794

  48. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29:273–285

    Article  Google Scholar 

  49. Ra**ikanth V, Satapathy SC, Dey N, Fernandes SL, Manic KS (2019) Skin melanoma assessment using Kapur’s entropy and level set – a study with bat algorithm. Smart Innov Syst Technol 104:193–202. https://doi.org/10.1007/978-981-13-1921-1_19

    Article  Google Scholar 

  50. Shriranjani D et al (2018) Kapur’s entropy and active contour-based segmentation and analysis of retinal optic disc. Lect Notes Electr Eng 490:287–295. https://doi.org/10.1007/978-981-10-8354-9_26

    Article  Google Scholar 

  51. Shi Y (2011) Brain storm optimization algorithm. Lect Notes Comput Sci 6728:303–309. https://doi.org/10.1007/978-3-642-21515-5_36

    Article  Google Scholar 

  52. Cheng S, Shi Y, Qin Q, Zhang Q, Bai R (2014) Population diversity maintenance in brain storm optimization algorithm. J Artif Intell Soft Comput Res 4(2):83–97

    Article  Google Scholar 

  53. Cheng S, Qin Q, Chen J, Shi Y (2016) Brain storm optimization algorithm: a review. Artif Intell Rev 46(4):445–458

    Article  Google Scholar 

  54. Manic KS, Priya RK, Ra**ikanth V (2016) Image multithresholding based on Kapur/Tsallis entropy and firefly algorithm. Indian J Sci Technol 9(12):89949

    Google Scholar 

  55. Raja NSM, Ra**ikanth V, Fernandes SL, Satapathy SC (2017) Segmentation of breast thermal images using Kapur’s entropy and hidden Markov random field. J Med Imaging Health Inform 7(8):1825–1829

    Article  Google Scholar 

  56. Fernandes SL, Ra**ikanth V, Kadry S (2019) A hybrid framework to evaluate breast abnormality. IEEE Consum Electron Mag 8(5):31–36. https://doi.org/10.1109/MCE.2019.2905488

    Article  Google Scholar 

  57. Dey N, Ra**ikanth V, Ashour AS, Tavares JMRS (2018) Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2):51. https://doi.org/10.3390/sym10020051

    Article  Google Scholar 

  58. Dey N, Shi F, Ra**ikanth V (2019) Leukocyte nuclei segmentation using entropy function and Chan-Vese approach. Inf Technol Intell Transp Syst 314:255–264. https://doi.org/10.3233/978-1-61499-939-3-255

    Article  Google Scholar 

  59. Dey N (ed) (2017) Advancements in applied metaheuristic computing. IGI Global, Hershey

    Google Scholar 

  60. Dey N (2020) Applications of firefly algorithm and its variants. Springer, Singapore

    Book  Google Scholar 

  61. https://radiopaedia.org/articles/ischaemic-stroke. Accessed 25 Jan 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ra**ikanth .

Editor information

Editors and Affiliations

Appendix

Appendix

Fig. 2.9
figure 9

Results attained with LS. (a) Initiation of bounding box, (b) bounding box, (c) converged LS on tumor, (d) 3D view of the extracted tumor, (e) binary image of the tumor (similar kind of results were attained with the active contour and region growing segmentation techniques)

Fig. 2.10
figure 10

Sample images from high-grade BRATS2015 database

Fig. 2.11
figure 11

Sample images from Radiopaedia clinical grade database

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, D., Ra**ikanth, V., Lin, H. (2021). Hybrid Image Processing-Based Examination of 2D Brain MRI Slices to Detect Brain Tumor/Stroke Section: A Study. In: Priya, E., Ra**ikanth, V. (eds) Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-6141-2_2

Download citation

Publish with us

Policies and ethics

Navigation