Additive Manufacturing Technologies Based on Photopolymerization

  • Chapter
  • First Online:
Nanophotonics in Biomedical Engineering
  • 826 Accesses

Abstract

The rapid progress of additive manufacturing (AM) allows the digital design and rapid prototy** of three-dimensional (3D) microstructures, which have promoted the development of optics, electronics, mechanics, and medicine. Among the current strategies for AM, photopolymerization, which takes advantage of the light reaction for photocurable polymers, has shown significant benefits for high-resolution printing of objects with complex geometrical configurations. In this book chapter, we review the development process of AM technologies based on photopolymerization. Digital projection lithography (DPL) and direct laser writing (DLW) are included to summarize the advantages and disadvantages in throughput and resolution. Finally, the current challenges of these emerging methods and their applications in biomedical engineering are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn BY, Duoss EB, Motala MJ, Guo X, Park SI, **ong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science. 2009;323(5921):1590.

    Article  CAS  PubMed  Google Scholar 

  2. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312.

    Article  CAS  PubMed  Google Scholar 

  3. Xu T, Zhang J, Salehizadeh M, Onaizah O, Diller E. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci Robot. 2019;4(29):eaav4494.

    Article  PubMed  Google Scholar 

  4. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518.

    Article  CAS  PubMed  Google Scholar 

  5. Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540(7633):371.

    Article  CAS  PubMed  Google Scholar 

  6. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001;55(2):203.

    Article  CAS  PubMed  Google Scholar 

  7. Gratson GM, Xu M, Lewis JA. Microperiodic structures: direct writing of three-dimensional webs. Nature. 2004;428(6981):386.

    Article  CAS  PubMed  Google Scholar 

  8. An BW, Kim K, Lee H, Kim SY, Shim Y, Lee DY, Song JY, Park JU. High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv Mater. 2015;27(29):4322.

    Article  CAS  PubMed  Google Scholar 

  9. Liu W, Zhang YS, Heinrich MA, Ferrari FD, Jang HL, Bakht SM, Alvarez MM, Yang J, Li YC, Santiago GT, Miri AK, Zhu K, Khoshakhlagh P, Prakash G, Cheng H, Guan X, Zhong Z, Ju J, Zhu GH, ** X, Shin SR, Dokmeci MR, Khademhosseini A. High performance graphene/Ni 2 P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv Mater. 2017;29(3):1604630.

    Article  CAS  Google Scholar 

  10. Wu D, Wu SZ, Xu J, Niu LG, Midorikawa K, Sugioka K. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip. Laser Photonics Rev. 2014;8(3):458.

    Article  CAS  Google Scholar 

  11. Liu XQ, Chen QD, Guan KM, Ma ZC, Yu YH, Li QK, Tian ZN, Sun HB. Dry-etching-assisted femtosecond laser machining. Laser Photonics Rev. 2017;11(3):1600115.

    Article  CAS  Google Scholar 

  12. Li X, Zhang Q, Chen X, Gu M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep. 2013;3:2819.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Skylar-Scott MA, Gunasekaran S, Lewis JA. Laser-assisted direct ink writing of planar and 3D metal architectures. PNAS. 2016;113(22):6137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawata S, Sun HB, Tanaka T, Takada K. Finer features for functional microdevices. Nature. 2001;412(6848):697.

    Article  CAS  PubMed  Google Scholar 

  15. Cao YY, Takeyasu N, Tanaka T, Duan XM, Kawata S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small. 2009;5(10):1144.

    CAS  PubMed  Google Scholar 

  16. Jacobsen AJ, Barvosa-Carter W, Nutt S. Micro-scale truss structures formed from self-propagating photopolymer waveguides. Adv Mater. 2007;19(22):3892.

    Article  CAS  Google Scholar 

  17. Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA, Kucheyev SO, Fang NX, Spadaccini CM. Ultralight, ultrastiff mechanical metamaterials. Science. 2014;344(6190):1373.

    Article  CAS  PubMed  Google Scholar 

  18. Bauer J, Schroer A, Schwaiger R, Kraft O. Approaching theoretical strength in glassy carbon nanolattices. Nat Mater. 2016;15(4):438.

    Article  CAS  PubMed  Google Scholar 

  19. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, McCord-Maughon D, Qin J, Röckel H, Rumi M, Wu XL, Marder SR, Perry JW. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature. 1999;398(6722):51.

    Article  CAS  Google Scholar 

  20. LaFratta CN, Fourkas JT, Baldacchini T, Farrer RA. Multiphoton fabrication. Angew Chem Int Ed. 2007;46(33):6238.

    Article  CAS  Google Scholar 

  21. Zheng X, Deotte J, Alonso MP, Farquar GR, Weisgraber TH, Gemberling S, Lee H, Fang N, Spadaccini CM. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev Sci Instrum. 2012;83(12):125001.

    Article  PubMed  CAS  Google Scholar 

  22. Sun C, Fang N, Wu DM, Zhang X. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuators, A. 2005;121(1):113.

    Article  CAS  Google Scholar 

  23. Johnson DW, Sherborne C, Didsbury MP, Pateman C, Cameron NR, Claeyssens F. Macrostructuring of emulsion-templated porous polymers by 3D laser patterning. Adv Mater. 2013;25(23):3178.

    Article  CAS  PubMed  Google Scholar 

  24. Hegde M, Meenakshisundaram V, Chartrain N, Sekhar S, Tafti D, Williams CB, Long TE. 3D printing all-aromatic polyimides using mask-projection stereolithography: processing the nonprocessable. Adv Mater. 2017;29(31):1701240.

    Article  CAS  Google Scholar 

  25. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET, DeSimone JM. Continuous liquid interface production of 3D objects. Science. 2015;347(6428):1349.

    Article  CAS  PubMed  Google Scholar 

  26. Ligon SC, Husár B, Wutzel H, Holman R, Liska R. Strategies to reduce oxygen inhibition in photoinduced polymerization. Chem Rev. 2014;114(1):557.

    Article  CAS  PubMed  Google Scholar 

  27. Ding H, Zhang Q, Gu H, Liu X, Sun L, Gu M, Gu Z. Controlled Microstructural architectures based on smart fabrication strategies. Adv Funct Mater. 2020;30(2):1901760.

    Article  CAS  Google Scholar 

  28. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121.

    Article  CAS  PubMed  Google Scholar 

  29. Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA. Additive manufacturing of polymer-derived ceramics. Science. 2016;351(6268):58.

    Article  CAS  PubMed  Google Scholar 

  30. Gattass RR, Mazur E. Femtosecond laser micromachining in transparent materials. Nat Photonics. 2008;2(4):219.

    Article  CAS  Google Scholar 

  31. Maruo S, Fourkas JT. Recent progress in multiphoton microfabrication. Laser Photonics Rev. 2008;2(1–2):100.

    Article  CAS  Google Scholar 

  32. Anscombe N. Direct laser writing. Nat Photonics. 2010;4:22.

    Article  CAS  Google Scholar 

  33. Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl Phys Rev. 2014;1(4):041303.

    Article  CAS  Google Scholar 

  34. Li L, Gattass RR, Gershgoren E, Hwang H, Fourkas JT. Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science. 2009;324(5929):910.

    Article  CAS  PubMed  Google Scholar 

  35. Gan Z, Cao Y, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 Nm feature size. Nat Commun. 2013;4:2061.

    Article  PubMed  CAS  Google Scholar 

  36. Gan Z, Turner MD, Gu M. Biomimetic gyroid nanostructures exceeding their natural origins. Sci Adv. 2016;2(5):e1600084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Maruo S, Ikuta K. Three-dimensional microfabrication by use of single-photon-absorbed polymerization. Appl Phys Lett. 2000;76(19):2656.

    Article  CAS  Google Scholar 

  38. Galajda P, Ormos P. Complex micromachines produced and driven by light. Appl Phys Lett. 2001;78(2):249.

    Article  CAS  Google Scholar 

  39. Thiel M, Fischer J, Freymann G, Wegener M. Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Appl Phys Lett. 2010;97(22):221102.

    Article  CAS  Google Scholar 

  40. Mueller P, Thiel M, Wegener M. 3D direct laser writing using a 405 Nm diode laser. Opt Lett. 2014;39(24):6847.

    Article  PubMed  Google Scholar 

  41. Turner MD, Saba M, Zhang Q, Cumming BP, Schröder-Turk GE, Gu M. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat Photonics. 2013;7(10):801.

    Article  CAS  Google Scholar 

  42. Huang L, Salter PS, Payne F, Booth MJ. Aberration correction for direct laser written waveguides in a transverse geometry. Opt Express. 2016;24(10):10565.

    Article  CAS  PubMed  Google Scholar 

  43. Wong S, Deubel M, Pérez-Willard F, John S, Ozin GA, Wegener M, Freymann G. Direct laser writing of three- dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses. Adv Mater. 2006;18(3):265.

    Article  CAS  Google Scholar 

  44. Salter PS, Jesacher A, Spring JB, Metcalf BJ, Thomas-Peter N, Simmonds RD, Langford NK, Walmsley IA, Booth MJ. Adaptive slit beam sha** for direct laser written waveguides. Opt Lett. 2012;37(4):470.

    Article  CAS  PubMed  Google Scholar 

  45. Cumming BP, Debbarma S, Luther-Davis B, Gu M. Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective. Opt Express. 2013;21(16):19135.

    Article  PubMed  CAS  Google Scholar 

  46. He F, Xu H, Cheng Y, Ni J, **ong H, Xu Z, Sugioka K, Midorikawa K. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett. 2010;35(7):1106.

    Article  PubMed  Google Scholar 

  47. Chu W, Tan Y, Wang P, Xu J, Li W, Qi J, Cheng Y. Centimeter-height 3D printing with femtosecond laser two-photon polymerization. Adv Mater Technol. 2018;3(5):1700396.

    Article  CAS  Google Scholar 

  48. Sun B, Salter PS, Roider C, Jesacher A, Strauss J, Heberle J, Schmidt M, Booth MJ. Four-dimensional light sha**: manipulating ultrafast spatiotemporal foci in space and time. Light: Sci Appl. 2018;7(1):17117.

    Article  CAS  Google Scholar 

  49. Kato J, Takeyasu N, Adachi Y, Sun HB, Kawata S. Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett. 2005;86(4):044102.

    Article  CAS  Google Scholar 

  50. Jesacher A, Booth MJ. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt Express. 2010;18(20):21090.

    Article  CAS  PubMed  Google Scholar 

  51. Lin H, Jia B, Gu M. Dynamic generation of debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett. 2011;36(3):406.

    Article  PubMed  Google Scholar 

  52. Lin H, Gu M. Creation of diffraction-limited non-airy multifocal arrays using a spatially shifted vortex beam. Appl Phys Lett. 2013;102(8):084103.

    Article  CAS  Google Scholar 

  53. Li X, Cao Y, Tian N, Fu L, Gu M. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica. 2015;2(6):567.

    Article  CAS  Google Scholar 

  54. Geng Q, Wang D, Chen P, Chen SC. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun. 2019;10(1):2179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang C, Yang L, Hu Y, Rao S, Wang Y, Pan D, Ji S, Zhang C, Su Y, Zhu W, Li J, Wu D, Chu J. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trap** microobjects. ACS Nano. 2019;13(4):4667.

    Article  CAS  PubMed  Google Scholar 

  56. Derby B. Printing and prototy** of tissues and scaffolds. Science. 2012;338(6109):921.

    Article  CAS  PubMed  Google Scholar 

  57. Moroni L, Boland T, Burdick JA, Maria CD, Derby B, Forgacs G, Groll J, Li Q, Malda J, Mironov VA, Mota C, Nakamura M, Shu W, Takeuchi S, Woodfield TBF, Xu T, Yoo JJ, Vozzi G. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36(4):384.

    Article  CAS  PubMed  Google Scholar 

  58. Wiesbauer M, Wollhofen R, Vasic B, Schilcher K, Jacak J, Klar TA. Nano-anchors with single protein capacity produced with STED lithography. Nano Lett. 2013;13(11):5672.

    Article  CAS  PubMed  Google Scholar 

  59. Gomez LPC, Spangenberg A, Ton XA, Fuchs Y, Bokeloh F, Malval JP, Bui BTS, Thuau D, Ayela C, Haupt K, Soppera O. Rapid prototy** of chemical microsensors based on molecularly imprinted polymers synthesized by two-photon stereolithography. Adv Mater. 2016;28(28):5931.

    Article  CAS  PubMed  Google Scholar 

  60. Tian Y, Zhang YL, Ku JF, He Y, Xu BB, Chen QD, **a H, Sun HB. High performance magnetically controllable microturbines. Lab Chip. 2010;10(21):2902.

    Article  CAS  PubMed  Google Scholar 

  61. Vizsnyiczai G, Frangipane G, Maggi C, Saglimbeni F, Bianchi S, Leonardo RD. Light controlled 3D micromotors powered by bacteria. Nat Commun. 2017;8:15974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang R, Larsen NB. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Lab Chip. 2017;17(24):4273.

    Article  CAS  PubMed  Google Scholar 

  63. Xue D, Wang Y, Zhang J, Mei D, Wang Y, Chen S. Projection-based 3D printing of cell patterning scaffolds with multiscale channels. ACS Appl Mater Interfaces. 2018;10(23):19428.

    Article  CAS  PubMed  Google Scholar 

  64. Morley CD, Ellison ST, Bhattacharjee T, O’Bryan CS, Zhang Y, Smith KF, Kabb CP, Sebastian M, Moore GL, Schulze KD, Niemi S, Sawyer WG, Tran DD, Mitchell DA, Sumerlin BS, Flores CT, Angelini TE. Quantitative characterization of 3D bioprinted structural elements under cell generated forces. Nat Commun. 2019;10(1):3029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Hohmann JK, Freymann G. Influence of direct laser written 3D topographies on proliferation and differentiation of osteoblast-like cells: towards improved implant surfaces. Adv Funct Mater. 2014;24(42):6573.

    Article  CAS  Google Scholar 

  66. Klein F, Striebel T, Fischer J, Jiang Z, Franz CM, Freymann G, Wegener M, Bastmeyer M. Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater. 2010;22(8):868.

    Article  CAS  PubMed  Google Scholar 

  67. Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano. 2018;12(9):9617.

    Article  CAS  PubMed  Google Scholar 

  68. Jeon S, Kim S, Ha S, Lee S, Kim E, Kim SY, Park SH, Jeon JH, Kim SW, Moon C, Nelson BJ, Kim J, Yu SW, Choi H. Magnetically actuated microrobots as a platform for stem cell transplantation. Sci Robot. 2019;4(30):eaav4317.

    Article  PubMed  Google Scholar 

  69. Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater. 2012;24(6):811.

    Article  CAS  PubMed  Google Scholar 

  70. Hu Y, Lao Z, Cumming BP, Wu D, Li J, Liang H, Chu J, Huang W, Gu M. Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly. PNAS. 2015;112(22):6876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics. 2016;10(8):554.

    Article  CAS  Google Scholar 

  72. Deubel M, Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater. 2004;3(7):444.

    Article  CAS  PubMed  Google Scholar 

  73. Meza LR, Das S, Greer JR. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science. 2014;345(6202):1322.

    Article  CAS  PubMed  Google Scholar 

  74. Yee DW, Lifson ML, Edwards BW, Greer JR. Additive manufacturing of 3D-architected multifunctional metal oxides. Adv Mater. 2019;31(33):1901345.

    Article  CAS  Google Scholar 

  75. Tabrizi S, Cao Y, Cumming BP, Jia B, Gu M. Functional optical plasmonic resonators fabricated via highly photosensitive direct laser reduction. Adv Optical Mater. 2016;4(4):529.

    Article  CAS  Google Scholar 

  76. Yang X, Sun M, Bian Y, He X. A room-temperature high-conductivity metal printing paradigm with visible-light projection lithography. Adv Funct Mater. 2019;29(1):1807615.

    Article  CAS  Google Scholar 

  77. Zeng Y, Du X, Hou W, Liu X, Zhu C, Gao B, Sun L, Li Q, Liao J, Levkin PA, Gu Z. UV-triggered polydopamine secondary modification: fast deposition and removal of metal nanoparticles. Adv Funct Mater. 2019;29(34):1901875.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **angwei Zhao or Zhongze Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, H., Zhao, X., Gu, Z. (2021). Additive Manufacturing Technologies Based on Photopolymerization. In: Zhao, X., Lu, M. (eds) Nanophotonics in Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6137-5_9

Download citation

Publish with us

Policies and ethics

Navigation