Rediscovering Medicinal Activity and Food Significance of Shogaol (4, 6, 8, 10, and 12): Comprehensive Review

  • Chapter
  • First Online:
Innovations in Food Technology

Abstract

Ginger Zingiber officinale Roscoe is a natural dietary rhizome. The plant is a herbaceous tropical monocotyledon perennial plant which belongs to the family Zingiberaceae and subfamily Zingiberoideae and possesses various biological properties and/or activities. Ginger has been reported to play several roles in ameliorating several health conditions which might be linked to the presence of numerous biological components including gingerols, gingerdiols, shogaols, paradols, and zingerones. However, shogaol has been found to be a major active component of ginger which exists in various forms such as 4-, 6-, 8-, 10-, and 12-shogaol. Also, 6-shogaol has been discovered to be the most active component which possesses a non-pungent metabolite called 6-paradol. 6-Shogaol has various importance in the health, food, and beverage industries. The wide range of the usefulness of shogaol is associated with its taste, biocompatibility, and effect in ameliorating and/or preventing health challenges. Some uncountable medical benefits of shogaol include their application as anticancer drugs, antimicrobials, antioxidants, cardiovascular, anti-ulcer, and neuroprotective among others. Therefore, this review highlights recent advances and findings to the use of shogaol present as a bioactive substance in ginger and its wide application in medical, biological, and food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 175.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 219.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agbaje EO, Doe YP (2015) Gastric and duodenal antiulcer effects of aqueous bark extract of Dialium guineense Wild. (Fabaceae) and the possible mechanisms in laboratory models. J Phytopharmacol 4(5):268–275

    Google Scholar 

  • Ali BH, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46:409–420

    Article  CAS  PubMed  Google Scholar 

  • Ali AMA, El-Nour MEAM, Yagi SM (2018) Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Eng Biotechnol 16:677–682

    Article  PubMed  PubMed Central  Google Scholar 

  • al-Yahya MA, Rafatullah S, Mossa JS, Ageel AM, Parmar NS, Tariq M (1989) Gastroprotective activity of ginger (Zingiber officinale Rosc.) in albino rats. Am J Chin Med 17:51–56

    Article  CAS  PubMed  Google Scholar 

  • Appleyard CB, McCafferty DM, Tigley AW, Swain MG, Wallace JL (1996) Tumor necrosis factor mediation of NSAID-induced gastric damage: role of leukocyte adherence. Am J Physiol 270:G42–G48

    CAS  PubMed  Google Scholar 

  • Arshad M, Shadab M (2017) Zingiber officinale extract: antimicrobial properties phytochemical screening, drug likeness and physicochemical studies. Europ J Pharmaceut Med Res 4(3):364–368

    Google Scholar 

  • Baliga MS, Haniadka R, Pereira MM, D’Souza JJ, Pallaty PL, Bhat HP, Popuri S (2011) Update on the chemopreventive effects of ginger and its phytochemicals. Crit Rev Food Sci Nutr 51:499–523

    Article  CAS  PubMed  Google Scholar 

  • Betz O, Kranke P, Geldner G, Wulf H, Eberhart LHJ (2005) Is ginger a clinically relevant antiemetic? A systematic review of randomized controlled trials. Forsch Komp Klas Nat 12:14–23

    Google Scholar 

  • Chen CY, Liu TZ, Liu YW, Tseng WC, Liu RH, Lu FJ et al (2007) 6-shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p 53 mutant Mahlavu subline via an oxidative stress mediated caspase-dependent mechanism. J Agric Food Chem 55:948–954

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Lv L, Soroka D, Warin RF, Parks TA et al (2012) Metabolism of [6]-shogaol in mice and in cancer cells. Drug Metab Dispos 40:742–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127:515–520

    Article  CAS  PubMed  Google Scholar 

  • Fatoki H, Sanni D, Adeoyo O, Faleye B (2016) Computational evaluation of selected ginger components therapeutic potential in relevance to human diseases. J Nat Prod Plant Res 6(6):21–25

    CAS  Google Scholar 

  • Fatoki TH, Dutta S, Oyedele AS (2018) Uncovering the selective drug targets for urethane mediated cancer by network approach. J Appl Life Sci Int 19(2):1–12. https://doi.org/10.9734/JALSI/2018/45097

    Article  Google Scholar 

  • Fauci, Braunwald, Kasper, Hauser, Longo, Jameson, Loscalzo (2008) Harrisons principles of internal medicine, 17th edn. McGraw-Hill Medical Publishing Division, New York, pp 1855–1872

    Google Scholar 

  • Ferlay J, Bray F, Pisani P, Parkin DM (2001) GLOBOCAN (2000): Cancer Incidence, Mortality and Prevalence Worldwide IARC Cancer Base No 5 [10]. IARC, Lyon

    Google Scholar 

  • Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Gaire BP, Kwon OW, Park SH, Chun K-H, Kim SY, Shin DY, Choi JW (2015) Neuroprotective effect of 6-Paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS One 10(3):e0120203. https://doi.org/10.1371/journal.pone.0120203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghayur MN, Gilani AH, Afridi MB, Houghton PJ (2005) Cardiovascular effects of ginger aqueous extract and its phenolic constituents are mediated through multiple pathways. Vascul Pharmacol 43:234–241

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Wu H, Du L, Zhang W, Yang J (2014) Comparative antioxidant properties of some gingerols and shogaols, and the relationship of their contents with the antioxidant potencies of fresh and dried ginger (Zingiber officinale Roscoe). J Agric Sci Technol 16:1063–1072

    Google Scholar 

  • Ha SK, Moon E, Ju MS, Kim DH, Ryu JH, Oh MS, Kim SY (2012) 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 63(2):211–223. https://doi.org/10.1016/j.neuropharm.2012.03.016

    Article  CAS  PubMed  Google Scholar 

  • Hassan AM, Abutalib AA, Almagboul AZ, Kabbashi AS (2017) Antimicrobial activity of the rhizome essential oil of Zingiber officinale Roscoe. Adv Med Plant Res 5(1):5–10. March 2017

    Article  CAS  Google Scholar 

  • Hassanpour SH, Dehghani M (2017) Review of cancer from perspective of molecular. J Cancer Res Pract 4(4):127–129

    Article  Google Scholar 

  • Ho S-C, Su M-S (2016) Optimized heat treatment enhances the anti-inflammatory capacity of ginger. Int J Food Prop 19:1884–1898

    Article  CAS  Google Scholar 

  • Hou J, Sun E, Zhang ZH, Wang J, Yang L, Cui L, Ke ZC, Tan XB, Jia XB, Lv H (2017) Improved oral absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles. Drug Deliv 24:261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YL, Hung JY, Tsai YM, Tsai EM, Huang MS, Hou MF, Kuo PL (2015) 6-Shogaol, an active constituent of dietary ginger, impairs cancer development and lung metastasis by inhibiting the secretion of CCL2 in tumor-associated dendritic cells. J Agric Food Chem 63(6):1730–1738. Just Accepted Manuscript • Publication Date (Web): 26 Jan 2015

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Zhou P, Peng YB, Xu X, Ma J, Liu Q et al (2012) 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits antitumor activity in vivo through endoplasmic reticulum stress. PLoS One 7:e39664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung JY, Hsu YL, Li CT, Ko YC, Ni WC, Huang MS, Kuo PL (2009) 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells. J Agric Food Chem 57:9809–9816

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics. CA Cancer J Clin 59(4):225–249. https://doi.org/10.3322/caac.20006

  • Karakaya S (2004) Bioavailability of phenolic compounds. Crit Rev Food Sci Nutr 44:453–464

    Article  CAS  PubMed  Google Scholar 

  • Khiralla GM (2015) Antibiofilm and anti-adhesive effects of ginger against some food-related pathogens. J Food Res Technol 3(3):87–96

    Google Scholar 

  • Kim DSHL, Kim JY (2004) Side-chain length is important for shogaols in protecting neuronal cells from β-amyloid insult. Bioorg Med Chem Lett 14:1287–1289

    Article  CAS  PubMed  Google Scholar 

  • Kim MO, Lee M-H, Oi N, Kim SH, Bae KB, Huang Z, Kim DJ, Reddy K, Lee SY, Park SJ et al (2014) [6]-shogaol inhibits growth and induces apoptosis of non-small cell lung cancer cells by directly regulating Akt1/2. Carcinogenesis 35:683–691

    Article  CAS  PubMed  Google Scholar 

  • Laine L, Takeuchi K, Tarnawski A (2008) Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology 135:41–60

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Kim Y-G, Choi P, Ham J, Park JG, Lee J (2018) Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition. Front Cell Infect Microbiol 8:299. https://doi.org/10.3389/fcimb.2018.00299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Nitteranon V, Tang X, Liang J, Zhang G, Parkin KL, Hu Q (2012) In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem 135:332–337

    Article  CAS  PubMed  Google Scholar 

  • Lin CW, Hou WC, Shen SC, Juan SH, Ko CH, Wang LM et al (2008) Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis 29:1807–1815

    Article  CAS  PubMed  Google Scholar 

  • Ling H, Yang H, Tan SH, Chui WK, Chew EH (2010) 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-kB activation. Br J Pharmacol 161:1763–1777. https://doi.org/10.1111/j.1476-5381.2010.00991.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Liao C, Wolgemuth DJ (2000) A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 224:388–400

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Peng YB, Qi LW, Cheng XL, Xu XJ, Liu LL, Liu EH, Li P (2012) The cytotoxicity mechanism of 6-shogaol-treated HeLa human cervical cancer cells revealed by label-free shotgun proteomics and bioinformatics analysis. Evidence-based complementary and alternative medicine: eCAM 278652. https://doi.org/10.1155/2012/278652

  • MoÅ¡ovská S, Nováková D, Kaliňák M (2015) Antioxidant activity of ginger extract and identification of its active components. Acta Chimica Slovaca 8(2):115–119

    Google Scholar 

  • Muscara MN, Wallace JL (1999) Nitric oxide. V: therapeutic potential of nitric oxide donors and inhibitors. Am J Physiol 276:G1313–G1316

    CAS  PubMed  Google Scholar 

  • Nazim UM, Park S-Y (2018). Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p 53 and ROS. Int J Molecul Med. Pubmed id: 30483736

    Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  • Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Tyagi AK (2015) Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract 2015:142979

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratap SR, Gangadharappa HV, Mruthunjaya K (2017) Ginger: a potential neutraceutical, an updated review. Int J Pharmacog Phytochem Res 9(9):1227–1238. https://doi.org/10.25258/phyto.v9i09.10311

    Article  Google Scholar 

  • Qi LW, Zhang Z, Zhang CF, Anderson S, Liu Q, Yuan CS, Wang CZ (2015) Anti-colon cancer effects of 6-shogaol through G2/M cell cycle arrest by p53/p21-cdc2/cdc25A crosstalk. Am J Chin Med 43(4):743–756. https://doi.org/10.1142/S0192415X15500469

    Article  CAS  PubMed  Google Scholar 

  • Rahmani AH, Al-shabrmi FM, Aly SM (2014) Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. Int J Physiol Pathophysiol Pharmacol 6(2):125–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A, Vasudevan S, Sengupta S (2015) 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of notch signaling pathway and induction of autophagic cell death. PLoS One 10(9):e0137614. https://doi.org/10.1371/journal.pone.0137614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riaz H, Begum A, Raza SA, Khan ZM, Yousaf H, Tariq A (2015) Antimicrobial property and phytochemical study of ginger found in local area of Punjab. Pak Int Curr Pharmaceut J, June 2015 4(7):405–409

    CAS  Google Scholar 

  • Rigane G, Mnif S, Ben Salem R (2017) One step purification of 6-shogaol from Zingiber officinale Roscoe, a phenolic compound having a high effectiveness against bacterial strains. Rev Roum Chim 63(1):5–10

    Google Scholar 

  • Saha A, Blando J, Silver E, Beltran L, Sessler J, DiGiovanni J (2014) 6-shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-kappa B signaling. Cancer Prev Res 7:627–638

    Article  CAS  Google Scholar 

  • Santucci L, Fiorucci S, DiMatteo FM, Morelli A (1995) Role of tumor necrosis factor release and leukocyte margination in indomethacin-induced gastric injury in rats. Gastroenterology 108:393–401

    Article  CAS  PubMed  Google Scholar 

  • Schwertner HA, Rios DC (2007) High-performance liquid chromatographic analysis of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol in ginger-containing dietary supplements, spices, teas, and beverages. J Chromatogr B 856:41–47

    Article  CAS  Google Scholar 

  • Seow SLS, Hong SL, Lee GS, Malek SNA, Sabaratnam V (2017) 6-shogaol, a neuroactive compound of ginger (jahe gajah) induced neuritogenic activity via NGF responsive pathways in PC-12 cells. BMC Complement Altern Med 17:334. https://doi.org/10.1186/s12906-017-1837-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SS, Gupta YK (1998) Reversal of cisplatin-induced delay in gastric emptying in rats by ginger (Zingiber officinale). J Ethnopharmacol 62:49–55

    Article  CAS  PubMed  Google Scholar 

  • Shim S, Kwon J (2012) Effects of [6]-shogaol on cholinergic signaling in HT22 cells following neuronal damage induced by hydrogen peroxide. Food Chem Toxicol 50:1454–1459

    Article  CAS  PubMed  Google Scholar 

  • Shim S, Kim S, Choi D-S, Kwon Y-B, Kwon J (2011) Anti-inflammatory effects of [6]-shogaol: potential roles of HDAC inhibition and HSP70 induction. Food Chem Toxicol 49(11):2734–2740. https://doi.org/10.1016/j.fct.2011.08.012

    Article  CAS  PubMed  Google Scholar 

  • Shin Y, Yoon SH, Choe EY, Cho SH, Woo CH, Rho JY et al (2007) PMA-induced up-regulation of MMP-9 is regulated by a PKCalpha-NF-kappaB cascade in human lung epithelial cells. Exp Mol Med 39:97–105

    Article  CAS  PubMed  Google Scholar 

  • Siddaraju M, Nanjundaiah, Annaiah HNM, Dharmesh SM (2010) Gastroprotective effect of ginger rhizome (Zingiber officinale) extract: role of gallic acid and Cinnamic acid in H, K-ATPase/H. pylori inhibition and anti-oxidative mechanism. eCAM, Oxford J 8:24

    Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics. CA Cancer J Clin 65:5–29

    Article  PubMed  Google Scholar 

  • Suk S, Seo SG, Yu JG, Yang H, Jeong E, Jang YJ, Yaghmoor SS, Ahmed Y, Yousef JM, Abualnaja KO, Al-Malki AL, Kumosani TA, Lee CY, Lee HJ, Lee KW (2016) A bioactive constituent of ginger, 6-Shogaol, prevents adipogenesis and stimulates lipolysis in 3T3-L1 adipocytes. J Food Biochem 40(1):84–90

    Article  CAS  Google Scholar 

  • Timofeev O, Cizmecioglu O, Hu E, Orlik T, Hoffmann I (2009) Human Cdc25A phosphatase has a non-redundant function in G2 phase by activating cyclin A-dependent kinases. FEBS Lett 583:841–847

    Article  CAS  PubMed  Google Scholar 

  • Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB et al (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260. https://doi.org/10.1097/JTO.0000000000000630

    Article  PubMed  Google Scholar 

  • Vasala PA (2001) Ginger. In: Peter KV (ed) Handbook of herbs and spices. Woodland Publishing Limited, Cambridge, p 195

    Chapter  Google Scholar 

  • Wallace JL (2008) Prostaglandin, NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol Rev 88:1547–1565

    Article  CAS  PubMed  Google Scholar 

  • Wallace JL, Miller MJ (2000) Nitric oxide in mucosal defense: a little goes a long way. Gastroenterology 119:512–520

    Article  CAS  PubMed  Google Scholar 

  • Wang GZ, Huang GP, Yin GL, Zhou G, Guo CJ, **e CG et al (2007) Aspirin can elicit the recurrence of gastric ulcer induced with acetic acid in rats. Cell Physiol Biochem 20:205–212

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hasegawa J, Wang X, Matsuda A, Tokuda T, Miura N, Tatsuo WT (2011) Protective effects of ginger against aspirin-induced gastric ulcers in rats. Yonago Acta Med 54:11–19

    PubMed  PubMed Central  Google Scholar 

  • Warin RF, Chen H, Soroka DN, Zhu Y, Sang S (2014) Induction of lung cancer cell apoptosis through a p53 pathway by [6]-shogaol and its cysteine-conjugated metabolite M2. J Agric Food Chem 62:1352–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei CK, Tsai YH, Korinek M, Hung PH, El-Shazly M, Cheng YB, Wu YC, Hsieh TJ, Chang FR (2017) 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int J Mol Sci 18:168

    Google Scholar 

  • Weng C-J, Wu C-F, Huang H-W, Ho C-T, Yen G-C (2010) Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol Nutr Food Res 54:1618–1627

    Article  CAS  PubMed  Google Scholar 

  • Wild CP, Andersson C, O’Brien NM, Wilson L, Woods JA (2001) A critical evaluation of the application of biomarkers in epidemiological studies on diet and health. Br J Nutr 86(Suppl 1):S37–S53

    Article  CAS  PubMed  Google Scholar 

  • Woo JH, Lim JH, Kim YH, Suh SI, Min DS, Chang JS et al (2004) Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene 23:1845–1853

    Article  CAS  PubMed  Google Scholar 

  • Yamahara J, Mochizuki M, Rong HQ, Matsuda H, Fujimura H (1988) The antiulcer effect in rats of ginger constituents. J Ethnopharmacol 23:299–304

    Article  CAS  PubMed  Google Scholar 

  • Yamahara J, Huang QR, Li YH, Xu L, Fujimura H (1990) Gastrointestinal motility enhancing effect of ginger and its active constituents. Chem Pharm Bull 38:430–431

    Article  CAS  Google Scholar 

  • Yamahara J, Hatakeyama S, Taniguchi K, Kawamura M, Yoshikawa M (1992) Stomachic principles in ginger, II. Pungent and anti-ulcer effects of low polar constituents isolated from ginger, the dried rhizome of Zingiber officinale, Rosc, cultivated in Taiwan, The absolute stereostructure of a new diarylheptanoid, Yakugaku zasshi. J Pharmaceu Soc Jap 112(9):645–655

    Article  CAS  Google Scholar 

  • Yoshikawa M, Hatakeyama S, Taniguchi K, Matsuda H, Yamahara J (1992) 6-Gingesulfonic acid, a new antiulcer principle and gingerglycolipids A, B and C, three new monoacyldigalactosyl glycerols, from Zingiberis Rhizoma originating in Taiwan. Chem Pharm Bull 40:2239–2240

    Article  CAS  Google Scholar 

  • Yoshikawa M, Yamaguchi S, Kunimi K, Matsuda H, Okuno Y, Yamahara J, Murakami N (1994) Stomachic principles in ginger. III. An anti-ulcer principle, 6-gingesulfonic acid, and three monoacyldigalactosylglycerols, gingerglycolipids A, B, and C, from Zingiberis Rhizoma originating in Taiwan. Chem Pharm Bull(Tokyo) 42(6):1226–1230

    Article  CAS  Google Scholar 

  • Zaman SU, Mirje MM, Ramabhimaiah S (2014) Evaluation of the anti-ulcerogenic effect of Zingiber officinale (ginger) root in rats. Int J Curr Microbiol App Sci 3(1):347–354

    Google Scholar 

  • Zhang X et al (2005) Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 280:8714–8721

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Nitteranon V, Chan LY, Parkin KL (2013) Glutathione conjugation attenuates biological activities of 6-dehydroshogaol from ginger. Food Chem 140:1–8

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Firempong CK, Wang YW, Xu WQ, Wang MM (2016) Ergosterol-loaded poly(lactide-co-glycolide) nanoparticles with enhanced in vitro antitumor activity and oral bioavailability. Acta Pharmacol Sin 37:834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang Q, Sun C, Zhu Y, Yang Q, Wei Q, Chen J, Deng W, Adu-Frimpong M, Yu J, Xu X (2019) Enhanced oral bioavailability, anti-tumor activity and hepatoprotective effect of 6-shogaol loaded in a type of novel micelles of polyethylene glycol and linoleic acid conjugate. Pharmaceutics 11:107

    Article  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Warin RF, Soroka DN, Chen H, Sang S (2013) Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation. PLoS One 8(1):e54677. https://doi.org/10.1371/journal.pone.0054677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Oluwaseun Adetunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roli, O.I., Adetunji, C.O., Mishra, R.R., Adetunji, J.B., Mishra, P., Fatoki, T.H. (2020). Rediscovering Medicinal Activity and Food Significance of Shogaol (4, 6, 8, 10, and 12): Comprehensive Review. In: Mishra, P., Mishra, R.R., Adetunji, C.O. (eds) Innovations in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6121-4_9

Download citation

Publish with us

Policies and ethics

Navigation