Caffeine: Nutraceutical and Health Benefit of Caffeine-Containing Commodities and Products

  • Chapter
  • First Online:
Innovations in Food Technology

Abstract

The ever-increasing population of mankind are globally combatting with several health challenges couple with a high level of synthetic drugs demands the search for a green solution that will be sustainable. Therefore, caffeine has been identified as a sustainable daily consumable that might be tailored to deliver its active component for the management of the various highlighted health challenges combating mankind through the daily and/or healthy meal. Caffeine (1,3,7-trimethylxanthine) is a soluble natural alkaloid present in plants which constitutes the main active biologically compound present in several food and beverages containing caffeine usually consumed by several individuals. The significance of caffeine-containing food and drinks has been documented over the years as antimicrobial agents; neuroprotective, antioxidant, and cardiovascular agents; and antidiabetics. Hence, this review intends to highlight the health and nutritional benefits of caffeine which has been highlighted as a vital nutritional ingredient which is present in some food products. Also, some previously in vitro and in vivo experiment carried out with caffeine and caffeine-containing products were well elucidated which have great attributes to release its controlled dose which plays an active role in the maintenance of the body cells, system, and their normal functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afify Abd E-MMR, Shalaby EA, El-Beltagi HS (2011) Antioxidant activity of aqueous extracts of different caffeine products. Not Bot Horti Agrobo 39:117–123

    Article  Google Scholar 

  • Arora DS, Kaur GJ, Kaur H (2009) Antibacterial activity of tea and coffee: their extracts and preparations. Int J Food Prop 12(2):286–294. https://doi.org/10.1080/10942910701675928

    Article  Google Scholar 

  • Cakir OK, Ellek N, Salehin N, Hamamc R, KeleÅŸ H, GökçeoÄŸluKayal D, Akakın D, Yüksel M, Özbeyli D (2017) Protective effect of low dose caffeine on psychological stress and cognitive function. Physiol Behav 168:1–10

    Article  CAS  Google Scholar 

  • Chen J, Xu K, Jacobus P, Petzer RS, Xu Y, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli NJ, Schwarzschild MA (2001) Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143

    Article  CAS  Google Scholar 

  • Costentin CE, Roudot-Thoraval F, Zafrani ES, Medkour F, Pawlotsky JM, Mallat A, Hézode C (2011) Association of caffeine intake and histological features of chronic hepatitis C. J Hepatol 54:1123–1129

    Article  CAS  Google Scholar 

  • Dall’lgna OP, Porciúncula LO, Souza DO, Cunha RA, Lara DR (2003) Neuroprotection by caffeine and adenosine A2Areceptor blockade of β-amyloid neurotoxicity. Br J Pharmacol 138:1207–1209. https://doi.org/10.1038/sj.bjp.0705185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dash SS, Gummadi SN (2008) Inhibitory effect of caffeine on growth of various bacterial strains. Res J Microbiol 3(6):457–465

    Article  CAS  Google Scholar 

  • DaSilva LA, Wouk J, Weber VM, Eltchechem CL, Almeida P, Martins JCL, Malfatti CR, Osiecki R (2017) Mechanisms and biological effects of caffeine on substrate metabolism homeostasis: a systematic review. J App Pharm Sci 7:215–221

    CAS  Google Scholar 

  • DemirtaÅŸ C, OfluoÄŸlu E, Hussein A, PaÅŸaoÄŸlu H (2012) Effects of caffeine on oxidant-antioxidant mechanisms in the rat liver. Gazi Med J 23:8–13

    Article  Google Scholar 

  • Devasagayam TPA, Kamat JP, HariMohan KPC (1996) Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochim Biophys Acta Biomembr 1282:63–70

    Article  Google Scholar 

  • Duangjaia A, Suphrom N, Wungrathc J, Ontawonga A, Nuengchamnongd N, Yosboonruange A (2016) Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Int Med Res 5:324–331

    Google Scholar 

  • Dudley RW, Patrick BS, Weiland DJ, Earle SB (2017) Determination of caffeine content in several over-the-counter energy supplements. J Nutraceuticals Food Sci 2:3–11

    Google Scholar 

  • Furtado KS, Prado MG, Aguiar SMA, Dias MC, Rivelli DP, Rodrigue MAM, Barbisan LF (2012) Coffee and caffeine protect against liver injury induced by thioacetamide in male Wistar rats. Basic Clin Pharmacol Toxicol 111:339–347. https://doi.org/10.1111/j.1742-7843.2012.00903.x

    Article  CAS  PubMed  Google Scholar 

  • Gülçİn Ä° (2008) In vitro prooxidant effect of caffeine. J Enzyme Inhib Med Chem 23:149–152

    Article  Google Scholar 

  • Ibrahim S, Salameh MM, Phetsomphou S, Yang H, Seo CW (2006) Application of caffeine, 1,3,7-trimethylxanthine, to control Escherichia coli O157:H7. Food Chem 99(4):645–650. https://doi.org/10.1016/j.foodchem.2005.08.026

    Article  CAS  Google Scholar 

  • Jayakeerthana S (2016) Benefits of green tea: a review. J Pharm Sci Res 8:1184–1187

    Google Scholar 

  • León-Carmona JR, Galano A (2011) Is caffeine a good scavenger of oxygenated free radicals? J Phys Chem 115:4538–4546

    Article  Google Scholar 

  • Liang N, Kitts DD (2014) Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules 19:19180–19208

    Article  Google Scholar 

  • Messina G, Zannella C, Monda V, Dato A, Liccardo D, De-Blasio S, Valenzano A, Moscatelli F, Messina A, Cibelli G, Monda M (2015) The beneficial effects of coffee in human nutrition. Biol Med (Aligarh) 7:4–7

    Article  Google Scholar 

  • Modi AA, Feld JJ, Park Y, Kleiner DE, Everhart JE, Liang TJ (2010) Increased caffeine consumption is associated with reduced hepatic fibrosis. Hepatology 51:201–209

    Article  CAS  Google Scholar 

  • Munoz DG, Fujioka S (2018) Caffeine and Parkinson disease. Neurology 90:205–206. https://doi.org/10.1212/wnl.0000000000004898

    Article  PubMed  Google Scholar 

  • Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T (2011) Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1C and related molecules in C57BL/6J mice. Am J Physiol Endocrinol Metab 300:122–133. [CrossRef] [PubMed]

    Article  Google Scholar 

  • Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M (2003) Effects of caffeine on human health. Food Addit Contam 20:1–30. https://doi.org/10.1080/0265203021000007840

    Article  CAS  PubMed  Google Scholar 

  • Nonthakaew A, Na M, Aewsiri T, Matan N (2015) Caffeine in foods and its antimicrobial activity. Int Food Res J 22(1):9–14

    CAS  Google Scholar 

  • Olajubu FA (2017) Antimicrobial and antihaemolytic activities of crude extracts of some commonly used tea and coffee in Nigeria. J Tea Sci Res 7(6):39–45. https://doi.org/10.5376/jtsr.2017.07.0006

    Article  Google Scholar 

  • Patay EB, Bencsik T, Papp N (2016) Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pac J Trop Med 9(12):1127–1135. https://doi.org/10.1016/j.apjtm.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  • Postuma RB, Anang J, Pelletier A, Joseph L, Moscovich M, Grimes D, Lang AE (2017) Caffeine as symptomatic treatment for Parkinson disease (Café-PD). Neurology 89:1795–1803. https://doi.org/10.1212/wnl.0000000000004568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruthviraj P, Suchita B, Shital K, Shilpa K (2011) Evaluation of antibacterial activity of caffeine. Int J Res Ayurveda & Pharmacy 2(4):1354–1357

    Google Scholar 

  • Ritchie K, Carriere I, De-Mendonca A, Portet F, Dartigues JF, Rouaud O, Ancelin ML (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545. https://doi.org/10.1212/01.wnl.0000266670.35219.0c

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez de Sotillo DV, Hadley M (2002) Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutri Biochem 13(12):717–726

    Article  CAS  Google Scholar 

  • Ross GW, Petrovitch H (2001) Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson’s? Dis Drugs Aging 18:797–806. https://doi.org/10.2165/00002512-200118110-00001

    Article  CAS  Google Scholar 

  • Ruhl CE, Everhart JE (2005) Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 128:24–32

    Article  CAS  Google Scholar 

  • Salomone F, Galvano F, Li Volti G (2017) Molecular bases underlying the hepatoprotective effects of coffee. Nutrients 9:85. https://doi.org/10.3390/nu9010085

    Article  CAS  PubMed Central  Google Scholar 

  • Verster JC, Koenig J (2017) Caffeine intake and its sources: a review of national representative studies. Crit Rev Food Sci Nutr 58:1250–1259. https://doi.org/10.1080/10408398.2016.1247252

    Article  CAS  PubMed  Google Scholar 

  • Vitaglione P, Morisco F, Mazzone G, Amoruso DC, Ribecco MT, Romano A, Fogliano V, Caporaso N, D’Argenio G (2010) Coffee reduces liver damage in a rat model of steatohepatitis: the underlying mechanisms and the role of polyphenols and melanoidins. Hepatology 52:1652–1661

    Article  CAS  Google Scholar 

  • Wachamo HL (2017) Review on health benefit and risk of coffee consumption. Med Aromat Plants 6:301. https://doi.org/10.4172/2167-0412.1000301

    Article  CAS  Google Scholar 

  • Zakir M, Sultan KB, Khan H, Ihsaanullah KMA, Fazal H, Rauf A (2015) Antimicrobial activity of different tea varieties available in Pakistan. Pak J Pharm Sci 28(6):2091–2094

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Oluwaseun Adetunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roli, O.I., Adetunji, C.O., Mishra, P., Adetunji, J.B., Mishra, R.R. (2020). Caffeine: Nutraceutical and Health Benefit of Caffeine-Containing Commodities and Products. In: Mishra, P., Mishra, R.R., Adetunji, C.O. (eds) Innovations in Food Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6121-4_29

Download citation

Publish with us

Policies and ethics

Navigation