Introduction to Part II

  • Chapter
  • First Online:
Kuranishi Structures and Virtual Fundamental Chains

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 688 Accesses

Abstract

In Part I, we described the foundation of the theory of Kuranishi structures, good coordinate systems, and CF-perturbations (also multivalued perturbations), and we defined the integration along the fiber (pushout) of a strongly submersive map with respect to a CF-perturbation and also proved Stokes’ formula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The equivalence class is defined by using the symplectic area and the Maslov index.

  2. 2.

    Though it is better to write it as \(\overset {\circ }{\mathcal M}_{k+1}(L;\beta )\), we omit L for the simplicity of notation.

  3. 3.

    Strictly speaking, in (22.17) we define a partial A algebra structure (see Definition 21.22) which depends on a parameter 𝜖 > 0. We then use a ‘homotopy limit’ in a way similar to that of the construction of A algebra explained in Sect. 15.1.7.

  4. 4.

    Actually Hutchings’ concern is not so much about the proof of independence of Morse–Novikov cohomology of the choices but rather the explicit form of the cochain homotopy equivalence, between two Morse–Novikov complexes before and after wall crossing. The discussion below clarifies the way to prove the independence of Morse–Novikov cohomology, but to find the explicit form of the cochain homotopy equivalence we need to study more. See [H1].

  5. 5.

    Our exposition below is a slightly improved version of the one that appeared in [FOOO14]. In [FOOO4] we took a countably generated subcomplex of a smooth singular chain complex. (We use Baire’s category theorem uncountably many times in [FOOO14] so that we do not need to take a countably generated subcomplex as we did in [FOOO4].) Here we take singular chain complex itself, that is the way of [FOOO14].

  6. 6.

    The one in [Jo4] may be regarded to be closer to a ‘coordinate free’ definition. His definition of a Kuranishi structure there is different from the one in this book.

References

  1. M. Abouzaid, K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Quantum cohomology and split generation in Lagrangian Floer theory, in preparation

    Google Scholar 

  2. A. Adem, J. Leida, Y. Ruan, Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics 171 (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  3. M. Akaho, D. Joyce, Immersed Lagrangian Floer theory. J. Diff. Geom. 86(3), 381–500 (2010)

    Article  MathSciNet  Google Scholar 

  4. E. Bao, K. Honda, Semi-global Kuranishi charts and the definition of contact homology, ar**v:1512.00580

    Google Scholar 

  5. A. Daemi, K. Fukaya, Monotone Lagrangian Floer theory in smooth divisor complements: I, submitted, ar**v:1808.08915

    Google Scholar 

  6. A. Daemi, K. Fukaya, Monotone Lagrangian Floer theory in smooth divisor complements: II, submitted, ar**v:1809.03409

    Google Scholar 

  7. A. Floer, Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120, 575–611 (1989)

    Article  MathSciNet  Google Scholar 

  8. K. Fukaya, Floer homology and mirror symmetry II, in Minimal Surfaces, Geometric Analysis and Symplectic Geometry, Baltimore, 1999. Advanced Studies in Pure Mathematics 34 (The Mathematical Society of Japan, Tokyo, 2002), pp. 31–127

    Google Scholar 

  9. K. Fukaya, Cyclic symmetry and adic convergence in Lagrangian Floer theory. Kyoto J. Math. 50(3), 521–590 (2010)

    Article  MathSciNet  Google Scholar 

  10. K. Fukaya, Differentiable operad, Kuranishi correspondence, and foundation of topological field theories based on pseudo-holomorphic curves, in Arithmetic and Geometry Around Quantization. Progress in Mathematics 279 (Birkhäuser, Boston, 2010), pp. 123–200

    Google Scholar 

  11. K. Fukaya, Floer homology of Lagrangian submanifolds. Suugaku Expositions 26, 99–127 (2013). ar**v:1106.4882

    Google Scholar 

  12. K. Fukaya, Lie groupoid, deformation of unstable curve, and construction of equivariant Kuranishi charts, to appear in Publ. RIMS, ar**v:1701.02840

    Google Scholar 

  13. K. Fukaya, Unobstructed immersed Lagrangian correspondence and filtered A infinity functor, submitted, ar**v:1706.02131

    Google Scholar 

  14. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory-Anomaly and Obstruction, preprint (Kyoto University, Kyoto, Japan, 2000)

    MATH  Google Scholar 

  15. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory-Anomaly and Obstruction, expanded version of [FOOO1], 2006 & 2007

    Google Scholar 

  16. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory-Anomaly and Obstruction, Part I. AMS/IP Studies in Advanced Mathematics 46.1 (International Press/American Mathematical Society, 2009). MR2553465

    Google Scholar 

  17. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory-Anomaly and Obstruction, Part II. AMS/IP Studies in Advanced Mathematics 46.2 (International Press/American Mathematical Society, 2009). MR2548482

    Google Scholar 

  18. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Anchored Lagrangian submanifolds and their Floer theory, in Mirror Symmetry and Tropical Geometry. Contemporary Mathematics 527 (American Mathematical Society, Providence, 2010), pp. 15–54

    Google Scholar 

  19. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Spectral Invariants with Bulk, Quasi-morphisms and Lagrangian Floer Theory. Memoirs of the American Mathematical Society 1254 (2019), 266pp, ar**v:1105.5123

    Google Scholar 

  20. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Floer theory over integers: spherically positive symplectic manifolds. Pure Appl. Math. Q. 9(2), 189–289 (2013), ar**v:1105.5124

    Google Scholar 

  21. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Technical details on Kuranishi structure and virtual fundamental chain, ar**v:1209.4410

    Google Scholar 

  22. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Exponential decay estimates and smoothness of the moduli space of pseudo-holomorphic curves, submitted, ar**v:1603.07026

    Google Scholar 

  23. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Kuranishi structure, Pseudo-holomorphic curve, and Virtual fundamental chain; Part 2, ar**v:1704.01848v1

    Google Scholar 

  24. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Construction of Kuranishi structures on the moduli spaces of pseudo-holomorphic disks: I. Surv. Diff. Geom. 22, 133–190 (2018), ar**v:1710.01459

    Google Scholar 

  25. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Construction of Kuranishi structures on the moduli spaces of pseudo-holomorphic disks: II, ar**v:1808.06106

    Google Scholar 

  26. K. Fukaya, K. Ono, Arnold conjecture and Gromov–Witten invariant. Topology 38(5), 933–1048 (1999)

    Article  MathSciNet  Google Scholar 

  27. M. Hutchings, Reidemeister torsion in generalized Morse theory. Forum Math. 14(2), 209–244 (2002)

    Article  MathSciNet  Google Scholar 

  28. M. Hutchings, Gluing a flow line to itself, floerhomology.wordpress.com /2014/07/14/gluing- a-flow-line-to-itself

    Google Scholar 

  29. K. Irie, Chain level loop bracket and pseudo-holomorphic disks. J Topology 13, 870–938 (2020), ar**v:1801.04633

    Google Scholar 

  30. S. Ishikawa, Construction of general symplectic field theory, ar**v:1807.09455

    Google Scholar 

  31. D. Joyce, A new definition of Kuranishi space, in Virtual Fundamental Cycles in Symplectic Topology, ed. by J. Morgan. Surveys and Monographs 237 (American Mathematical Society, 2019), ar**v:1409.6908

    Google Scholar 

  32. G. Liu, G. Tian, Floer homology and Arnold conjecture. J. Diff. Geom. 49, 1–74 (1998)

    Article  MathSciNet  Google Scholar 

  33. J. Pardon, Contact homology and virtual fundamental cycles. J. Am. Math. Soc. 32(3), 825–919 (2019), ar**v:1508.03873

    Google Scholar 

  34. P. Seidel, Fukaya Categories and Picard-Lefschetz Theory. Zurich Lectures in Advanced Mathematics (European Mathematical Society (EMS), Zurich, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fukaya, K., Oh, YG., Ohta, H., Ono, K. (2020). Introduction to Part II. In: Kuranishi Structures and Virtual Fundamental Chains. Springer Monographs in Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-5562-6_15

Download citation

Publish with us

Policies and ethics

Navigation