Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 742 Accesses

Abstract

The technique of virtual fundamental cycles (and chains) was introduced in the year 1996 by several groups of mathematicians [FOn2, LiTi2, LiuTi, Ru2, Sie] to provide a differential geometric foundation on the study of moduli spaces of pseudo-holomorphic curves entering on the one hand in the Gromov–Witten theory and on the other in the study of the Arnold conjecture in symplectic geometry without the assumption of any kind of positivity on general compact symplectic manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our main application, such a system is constructed from the moduli spaces of pseudo-holomorphic curves. However, those results we mention here are independent of the origin of such a system.

  2. 2.

    It is characterized by \(i(X_{H_t})\omega = d{H_t}\).

  3. 3.

    See for example [FOn1, Section 3].

  4. 4.

    This is mentioned also by Joyce [Jo1].

  5. 5.

    Except the choice of smooth structure of gluing parameter.

  6. 6.

    This is the viewpoint taken and insisted upon by Grothendieck.

  7. 7.

    The theory of singularities of C functions is one typical example.

  8. 8.

    For this reason in many places we do not need to say much about the proof.

  9. 9.

    Thorough knowledge of such a technicality, of course, should be shared among the people whose interest lies also on extending the technology to the extreme of its potential border and/or using the most delicate and difficult case of the technology to obtain the sharpest results possible.

  10. 10.

    Introduction to Part II can be seen at the beginning of Part II.

  11. 11.

    The authors thank D. Joyce for drawing our attention to this point.

  12. 12.

    Such a figure was observed in the year 1996 when the idea of virtual fundamental chains and cycles was incepted. (See [FOn2, Fig. 4.8].)

  13. 13.

    Here W is a vector space, ω is a top degree compactly supported form on W and \(\mathfrak s^{ \epsilon }\) is a section of the finite-dimensional bundle on \(W \times U_{\mathfrak p}\), which is the pullback of \(\mathcal E_{\mathfrak p}\).

  14. 14.

    Statements on other variants of transversality also hold.

  15. 15.

    For the construction of Gromov–Witten invariants there is an approach by algebraic geometry, which is somewhat similar to the symplectic geometry approach. We do not discuss it here.

  16. 16.

    See Theorem 8.15.

  17. 17.

    When we study the interior of the moduli space \(\mathcal M_{0,\ell }(\beta )\), we can find an appropriate local trivialization of the universal family of source curves (in the sense of fiber bundle of smooth orbifolds). So there is no such issue.

  18. 18.

    It seems that under this condition one can construct a Kuranishi model of S −1(0) at each point.

  19. 19.

    Applications to the moduli space of pseudo-holomorphic curves based on such a chain model are announced but are not available yet.

  20. 20.

    [FOn2, appendix],[FOOO21] etc.

  21. 21.

    http://media.scgp.stonybrook.edu/presentations/2013/20140318_McDuff.pdf

  22. 22.

    A similar method was used by Ruan [Ru2, Lemma 2.5 (page 171)].

  23. 23.

    Liu and Tian [LiuTi, page 8, line 3] took the same choice as McDuff and Wehrheim.

References

  1. A. Adem, J. Leida, Y. Ruan, Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics 171 (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  2. M. Akaho, D. Joyce, Immersed Lagrangian Floer theory. J. Diff. Geom. 86(3), 381–500 (2010)

    Article  MathSciNet  Google Scholar 

  3. E. Bao, K. Honda, Semi-global Kuranishi charts and the definition of contact homology, ar**v:1512.00580

    Google Scholar 

  4. K. Behrend, B. Fantechi, The intrinsic normal cone. Invent. Math. 128, 45–88 (1997)

    Article  MathSciNet  Google Scholar 

  5. K. Chan, S.-C. Lau, Open Gromov–Witten Invariants and Superpotentials for Semi-Fano Toric Surfaces. Int. Math. Res. Not. 2014(14), 3759–3789 (2014)

    Article  MathSciNet  Google Scholar 

  6. F. Charest, C. Woodward, Floer trajectories and stabilizing divisors. J. Fixed Point Theory Appl. 19(2), 1165–1236 (2017)

    Article  MathSciNet  Google Scholar 

  7. F. Charest, C. Woodward, Fukaya algebras via stabilizing divisors, ar**v:1505.08146

    Google Scholar 

  8. B. Chen, G. Tian, Virtual manifolds and localization. Acta Math. Sinica. 26, 1–24 (2010)

    Article  MathSciNet  Google Scholar 

  9. B. Chen, A.-M. Li, B.-L. Wang, Virtual neighborhood technique for pseudo-holomorphic spheres, ar**v:math/1306.3206

    Google Scholar 

  10. Y. Cho, Y. Kim, Y.-G. Oh, Lagrangian fibers of Gelfand-Cetlin systems, Adv. Math. 372 (2020), 107304, ar**v:1704.07213

    Google Scholar 

  11. K. Cieliebak, K. Mohnke, Symplectic hypersurfaces and transversality in Gromov–Witten theory. J. Symplectic Geom. 5, 281–356 (2007)

    Article  MathSciNet  Google Scholar 

  12. S.K. Donaldson, An application of gauge theory to four-dimensional topology. J. Differ. Geom. 18(2), 279–315 (1983)

    Article  MathSciNet  Google Scholar 

  13. S.K. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology. J. Differ. Geom. 26(3), 397–428 (1987)

    Article  MathSciNet  Google Scholar 

  14. S.K. Donaldson, Symplectic submanifolds and almost-complex geometry. J. Differ. Geom. 44(4), 666–705 (1996)

    Article  MathSciNet  Google Scholar 

  15. Y. Eliashberg, A. Givental, H. Hofer, Introduction to Symplectic Field Theory. GAFA 2000, Special Volume, Part II, pp. 560–673

    Google Scholar 

  16. H. Fan, T.J. Jarvis, Y. Ruan, The Witten equation and its virtual fundamental cycle, ar**v:0712.4025

    Google Scholar 

  17. A. Floer, Morse theory for Lagrangian intersections. J. Differ. Geom. 28, 513–547 (1988)

    Article  MathSciNet  Google Scholar 

  18. A. Floer, Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120, 575–611 (1989)

    Article  MathSciNet  Google Scholar 

  19. K. Fukaya, Morse homotopy, A –category, and Floer homologies, in Proceedings of Garc Workshop on Geometry and Topology, ed. by H.J. Kim (Seoul National University, 1994), pp. 1–102

    Google Scholar 

  20. K. Fukaya, Morse homotopy and its quantization, in Geometry and Topology, ed. by W. Kazez (International Press, 1997), pp. 409–440

    Google Scholar 

  21. K. Fukaya, Cyclic symmetry and adic convergence in Lagrangian Floer theory. Kyoto J. Math. 50(3), 521–590 (2010)

    Article  MathSciNet  Google Scholar 

  22. K. Fukaya, Y.-G. Oh, Zero-loop open string on cotangent bundle and Morse homotopy. Asian J. Math. 1, 96–180 (1998)

    Article  MathSciNet  Google Scholar 

  23. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory-Anomaly and Obstruction, Part I. AMS/IP Studies in Advanced Mathematics 46.1 (International Press/American Mathematical Society, 2009). MR2553465

    Google Scholar 

  24. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory-Anomaly and Obstruction, Part II. AMS/IP Studies in Advanced Mathematics 46.2 (International Press/American Mathematical Society, 2009). MR2548482

    Google Scholar 

  25. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Canonical models of filtered A -algebras and Morse complexes, in New Perspectives and Challenges in Symplectic Field Theory. CRM Proceedings and Lecture Notes 49 (American Mathematical Society, Providence, 2009), pp. 201–227. ar**v:0812.1963

    Google Scholar 

  26. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Floer theory on compact toric manifolds I. Duke Math. J. 151(1), 23–174 (2010)

    Article  MathSciNet  Google Scholar 

  27. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Floer theory on compact toric manifolds II : Bulk deformations. Sel. Math. New Ser. 17, 609–711 (2011)

    Article  MathSciNet  Google Scholar 

  28. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Antisymplectic involution and Floer cohomology. Geom. Topol. 21, 1–106 (2017), ar**v:0912.2646

    Google Scholar 

  29. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Floer theory and mirror symmetry on compact toric manifolds, ar**v:1009.1648v1

    Google Scholar 

  30. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Floer theory and mirror symmetry on compact toric manifolds. Astérisque 376 (2016). ar**v:1009.1648v2 (revised version of [FOOO10])

    Google Scholar 

  31. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Toric degeneration and non-displaceable Lagrangian tori in S 2 × S 2. Int. Math. Res. Not. IMRN 13, 2942–2993 (2012), ar**v:1002.1660

    Google Scholar 

  32. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Floer theory on compact toric manifolds: survey. Surv. Diff. Geom. 17, 229–298 (2012), ar**v:1011.4044

    Google Scholar 

  33. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Spectral Invariants with Bulk, Quasi-morphisms and Lagrangian Floer Theory. Memoirs of the American Mathematical Society 1254 (2019), 266pp, ar**v:1105.5123

    Google Scholar 

  34. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Floer theory over integers: spherically positive symplectic manifolds. Pure Appl. Math. Q. 9(2), 189–289 (2013), ar**v:1105.5124

    Google Scholar 

  35. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Displacement of polydisks and Lagrangian Floer theory. J. Symplectic Geom. 11(2), 231–268 (2013)

    Article  MathSciNet  Google Scholar 

  36. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Technical details on Kuranishi structure and virtual fundamental chain, ar**v:1209.4410

    Google Scholar 

  37. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Shrinking good coordinate systems associated to Kuranishi structures. J. Symplectic Geom. 14(4), 1295–1310 (2016), ar**v:1405.1755

    Google Scholar 

  38. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Exponential decay estimates and smoothness of the moduli space of pseudo-holomorphic curves, submitted, ar**v:1603.07026

    Google Scholar 

  39. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Kuranishi structure, Pseudo-holomorphic curve, and Virtual fundamental chain; Part 1, ar**v:1503.07631v1

    Google Scholar 

  40. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Construction of Kuranishi structures on the moduli spaces of pseudo-holomorphic disks: I. Surv. Diff. Geom. 22, 133–190 (2018), ar**v:1710.01459

    Google Scholar 

  41. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Construction of Kuranishi structures on the moduli spaces of pseudo-holomorphic disks: II, ar**v:1808.06106

    Google Scholar 

  42. K. Fukaya, K. Ono, Arnold conjecture and Gromov–Witten invariants for general symplectic manifolds, in The Arnold Fest, ed. by E. Bierstone, B. Khesin, A. Khovanskii, J. Marsden. Fields Institute Communications 24 (1999), pp. 173–190

    Google Scholar 

  43. K. Fukaya, K. Ono, Arnold conjecture and Gromov–Witten invariant. Topology 38(5), 933–1048 (1999)

    Article  MathSciNet  Google Scholar 

  44. M. Furuta, Perturbation of moduli spaces of self-dual connections. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(2), 275–297 (1987)

    MathSciNet  MATH  Google Scholar 

  45. T. Graber, R. Pandharipande, Localization of virtual classes. Invent. Math. 135, 487–518 (1999)

    Article  MathSciNet  Google Scholar 

  46. H. Hofer, D. Salamon, Floer homology and Novikov rings, in The Floer Memorial Volume, ed. by H. Hofer et al. (Birkhaüser, Basel-Boston-Berlin, 1995), pp. 483–524

    Chapter  Google Scholar 

  47. H. Hofer, K. Wysocki, E. Zehnder, Sc-smoothness, retractions and new models for smooth spaces. Discret. Continuous Dyn. Syst. 28(2), 665–788 (2010), ar**v:1002.3381v1

    Google Scholar 

  48. H. Hofer, K. Wysocki, E. Zehnder, Applications of Polyfold Theory I: The Polyfolds of Gromov–Witten Theory. Memoirs of the American Mathematical Society 248 (2017)

    Google Scholar 

  49. H. Hofer, K. Wysocki, E. Zehnder, Polyfold and Fredholm Theory, ar**v:1707.08941

    Google Scholar 

  50. E.-N. Ionel, T.H. Parker, The Gopakumar-Vafa formula for symplectic manifolds. Ann. Math. 187, 1–64 (2018)

    Article  MathSciNet  Google Scholar 

  51. K. Irie, Chain level loop bracket and pseudo-holomorphic disks. J Topology 13, 870–938 (2020), ar**v:1801.04633

    Google Scholar 

  52. S. Ishikawa, Construction of general symplectic field theory, ar**v:1807.09455

    Google Scholar 

  53. D. Joyce, Kuranishi homology and Kuranishi cohomology, ar**v 0707.3572v5

    Google Scholar 

  54. D. Joyce, D-manifolds and d-orbifolds: a theory of derived differential geometry, book manuscript

    Google Scholar 

  55. D. Joyce, On manifolds with corners, in Advances in Geometric Analysis ALM 21 (International Press, 2012), pp. 225–258, ISBN: 978-1571462480, ar**v:0910.3518

    Google Scholar 

  56. D. Joyce, A new definition of Kuranishi space, in Virtual Fundamental Cycles in Symplectic Topology, ed. by J. Morgan. Surveys and Monographs 237 (American Mathematical Society, 2019), ar**v:1409.6908

    Google Scholar 

  57. D. Joyce, Algebraic geometry over C -rings. Memoirs of the American Mathematical Society 1256 (2019)

    Google Scholar 

  58. M. Kontsevich, Y. Manin, Gromov–Witten classes quantum cohomology and enumerative geometry. Commun. Math. Phys. 164, 525–562 (1994)

    Article  MathSciNet  Google Scholar 

  59. J. Li, G. Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties. J. Am. Math. Soc. 11, 119–174 (1998)

    Article  MathSciNet  Google Scholar 

  60. J. Li, G. Tian, Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, in Topics in Symplectic 4-Manifolds, Irvine, 1996. First International Press Lecture Series 1 (International Press Cambridge, MA, 1998), pp. 47–83

    Google Scholar 

  61. G. Liu, G. Tian, Floer homology and Arnold conjecture. J. Diff. Geom. 49, 1–74 (1998)

    Article  MathSciNet  Google Scholar 

  62. C.-C.M. Liu, Moduli of J-Holomorphic Curves with Lagrangian Boundary Conditions and Open Gromov–Witten Invariants for anS 1-Equivariant Pair, ar**v:math/0210257

    Google Scholar 

  63. G. Lu, G. Tian, Constructing virtual Euler cycles and classes. International Mathematics Research Surveys, IMRS 2007, Art. ID rym001, 220pp

    Google Scholar 

  64. D. McDuff, D. Salamon, J-Holomorphic Curves and Symplectic Topology. American Mathematical Society Colloquim Publication 52 (American Mathematical Society, Providence, 1994)

    Google Scholar 

  65. T. Nishinou, Y. Nohara, K. Ueda, Toric degenerations of Gelfand-Cetlin systems and potential functions. Adv. Math. 224(2), 648–706 (2010)

    Article  MathSciNet  Google Scholar 

  66. Y.-G. Oh, Relative Floer and quantum cohomology and the symplectic topology of Lagrangian submanifolds, in Contact and Symplectic Geometry, ed. by C.B. Thomas (Cambridge University Press, Cambridge, 1996), pp. 201–267

    Google Scholar 

  67. K. Ono, On the Arnold conjecture for weakly monotone symplectic manifolds. Invent. Math. 119(3), 519–537 (1995)

    Article  MathSciNet  Google Scholar 

  68. K. Ono, Floer-Novikov cohomology and the flux conjecture. Geom. Funct. Anal. 16(5), 981–1020 (2006)

    Article  MathSciNet  Google Scholar 

  69. J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of J-holomorphic curves. Geom. Topol. 20, 779–1034 (2016)

    Article  MathSciNet  Google Scholar 

  70. J. Pardon, Contact homology and virtual fundamental cycles. J. Am. Math. Soc. 32(3), 825–919 (2019), ar**v:1508.03873

    Google Scholar 

  71. Y. Ruan, Topological sigma model and Donaldson-type invariant in Gromov theory. Duke Math. J. 83, 461–500 (1996)

    Article  MathSciNet  Google Scholar 

  72. Y. Ruan, Virtual neighborhood and pseudo-holomorphic curve. Turkish J. Math. 23(1), 161–231 (1999)

    MathSciNet  MATH  Google Scholar 

  73. Y. Ruan, G. Tian, A mathematical theory of quantum cohomology. J. Diff. Geom. 42, 259–367 (1995)

    Article  MathSciNet  Google Scholar 

  74. Y. Ruan, G. Tian, Higher genus symplectic invariants and sigma models coupled with gravity. Invent. Math. 130, 455–516 (1997)

    Article  MathSciNet  Google Scholar 

  75. I. Satake, On a generalization of the notion of manifold. Proc. Natl. Acad. Sci. U. S. A. 42, 359–363 (1956)

    Article  MathSciNet  Google Scholar 

  76. B. Siebert, Gromov–Witten invariants of general symplectic manifolds, ar**v:dg-ga/9608005

    Google Scholar 

  77. J. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, ar**v:math/0606429

    Google Scholar 

  78. J. Solomon, Involutions, obstructions and mirror symmetry, Adv. Math. 367 (2020), 107107 52p. ar**v:1810.07027

    Google Scholar 

  79. R. Thom, Quelque propriétés globales des variétés différentiable. Comment. Math. Helv. 28, 17–86 (1954)

    Article  MathSciNet  Google Scholar 

  80. G. Tian, G. Xu, Gauged Linear Sigma Model in Geometric Phases, ar**v:1809.00424

    Google Scholar 

  81. W. Wu, On an exotic Lagrangian torus in \({\mathbb C} P^2\). Compos. Math. 151(7), 1372–1394 (2015)

    Google Scholar 

  82. D. Yang, The Polyfold-Kuranishi Correspondence I: A Choice-independent Theory of Kuranishi Structures, ar**v:1402.7008

    Google Scholar 

  83. D. Yang, Virtual Harmony, ar**v:1510.06849

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fukaya, K., Oh, YG., Ohta, H., Ono, K. (2020). Introduction. In: Kuranishi Structures and Virtual Fundamental Chains. Springer Monographs in Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-5562-6_1

Download citation

Publish with us

Policies and ethics

Navigation