Improvement of Rice Quality via Biofortification of Micronutrients

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

The world’s growing population and limited land resources require high intensity of food production. Human nutrition needs both macronutrients and micronutrients. The major essential micro elements for humans include manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), boron (B), molybdenum (Mo), and selenium (Se). Mineral deficiency-related problems are common in the majority of the populations especially develo** countries as their staple food is rice. Development of the biofortified varieties of rice by increasing the levels of biologically available nutrients and low levels of toxic elements is necessary to improve the health and nutrition of the population. Enrichment of seeds with minerals is called biofortification. This process is performed on micro nutrients such as Fe, Zn, and Se in rice via agronomic, breeding, and genetic (biotechnologic) approaches. Agronomic efforts mostly include feeding of the mother plant via traditional fertilizing or seed treatments. Selection of the biofortified genotypes via current breeding pathways is widely used. In biotechnologic approach, various genes and proteins involved in producing the seeds rich in the above mentioned elements have been identified. The present study presents an overview about various agronomic, breeding, and transgenic approaches for the biofortification of rice grains with Fe, Zn, and Se elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164–174

    PubMed  PubMed Central  Google Scholar 

  • Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK (2013) Development of low phytate rice by RNAi mediated seed-specific silencing of Inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 8:e68161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. IZA and IFA, Brussels and Paris

    Google Scholar 

  • Aluru MR, Rodermel SR, Reddy MB (2011) Genetic modification of low phytic acid 1-1 maize to enhance iron content and bioavailability. J Agric Food Chem 59:12954–12962

    CAS  PubMed  Google Scholar 

  • Anandan A, Rajiv G, Eswaran R, Prakash M (2011) Genotypic variation and relationships between quality traits and trace elements in traditional and improved rice (Oryza sativa L.) genotypes. J Food Sci 76:H122–H130

    CAS  PubMed  Google Scholar 

  • Anuradha K, Agarwal S, Batchu AK, Babu AP, Swamy BPM, Longva T, Sarla N (2012a) Evaluating rice germplasm for iron and zinc concentration in brown rice and seed dimensions. J Geophys Res 4:19–25

    CAS  Google Scholar 

  • Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012b) Map** QTL and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene 508:233–240

    CAS  PubMed  Google Scholar 

  • Aung MS, Masuda H, Kobayashi T, Nakanishi H, Yamakawa T, Nishizawa NK (2013) Iron biofortification of Myanmar rice. Front Plant Sci 4:158

    PubMed  PubMed Central  Google Scholar 

  • Aung MS, Masuda H, Nozoye T, Kobayashi T, Jeon JS, An G, Nishizawa NK (2019) Nicotianamine synthesis by OsNAS3 is important for mitigating iron excess stress in rice. Front Plant Sci 10:660. https://doi.org/10.3389/fpls.2019.00660

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66:22–33

    CAS  PubMed  Google Scholar 

  • Banakar R, Alvarez Fernandez A, Díaz-Benito P, Abadia J, Capell T, Christou P (2017) Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. J Exp Bot 68:4983–4995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandillo N, Raghavan C, Muyco PA, Sevilla MA, Lobina IT, Dilla-Ermita CJ et al (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11. https://doi.org/10.1186/1939-8433-6-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Barua D, Saikia M (2018) Agronomic biofortification in rice varieties through zinc fertilization under aerobic condition. Indian J Agric Res 52(1):89–92

    Google Scholar 

  • Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S et al (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402

    CAS  PubMed  Google Scholar 

  • Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201. https://doi.org/10.1007/s11104-012-1240-5

    Article  CAS  Google Scholar 

  • Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK (2013) The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6(1):31–38

    PubMed  PubMed Central  Google Scholar 

  • Blancquaert D, Van Daele J, Strobbe S, Kiekens F (2015) Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nat Biotechnol 33(10):1076–1078

    CAS  PubMed  Google Scholar 

  • Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boldrin PF, Faquin V, Ramos SJ, Guilherme LRG, Bastos CEA, Carvalho GS, Costa ET (2012) Selenato e selenito na produc¸a˜o e biofortificac¸a˜o agronoˆ- mica com seleˆnio em arroz. Pesquisa Agropecua´ ria Brasileira 47:831–837

    Google Scholar 

  • Boldrin PF, Faquin V, Ramos SJ, Boldrin KVF, Avila FW, LRG G (2013) Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31:238–244

    Google Scholar 

  • Boonyaves K, Gruissem W, Bhullar NK (2016) NOD promoter-controlled AtIRT1 expression functions synergistically with NAS and ferritin genes to increase iron in rice grains. Plant Mol Biol 90(3):207–215

    CAS  PubMed  Google Scholar 

  • Boonyaves K, Wu TY, Gruissem W, Bhullar NK (2017) Enhanced grain iron levels in Rice expressing an iron-regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front Plant Sci 8(1):130

    PubMed  PubMed Central  Google Scholar 

  • Borba TCD, Brondani RPV, Breseghello F, Coelho ASG, Mendonça JA, Rangel PHN et al (2010) Association map** for yield and grain quality traits in rice (Oryza sativa L.). Genet Mol Biol 33:515–524. https://doi.org/10.1590/S1415-47572010005000065

    Article  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B, Madsen LH, Darbani B, Noeparvar S, Holm PB (2012) Wheat ferritins, improving the iron content of the wheat grain. J Cereal Sci 56:204–213

    CAS  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:531–540

    Google Scholar 

  • Brown PH, Cakmak I, Zhang Q (1993) Form and function of zinc in plants. In: Robson AD (ed) Zinc in soils and plants, Chap 7. Kluwer Academic, Dordrecht, pp 90–106

    Google Scholar 

  • Cakmak I (2008) Enrichment of cereals grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1–2):1–17

    CAS  Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol 23:281–289

    CAS  PubMed  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortifcation of durum wheat with zinc and iron. Cereal Chem 87:10–20

    CAS  Google Scholar 

  • Chandel G, Banerjee S, See S, Meena R, Sharma DJ, Verulkar SB (2010) Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Sci 17:213–227. https://doi.org/10.1016/S1672-6308(09)60020-2

    Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc 363:557–572

    CAS  Google Scholar 

  • Connorton JM, Balk J (2019) Iron biofortification of staple crops: lessons and challenges in plant genetics. Plant Cell Physiol 60(7):1447–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Connorton JM, Balk J, Rodrıguez-Celma J (2017) Iron homeostasis in plants – a brief overview. Metallomics 9:813–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darbani B, Briat JF, Holm PB, Husted S, Noeparvar S, Borg S (2013) Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol Adv 31:1292–1307

    CAS  PubMed  Google Scholar 

  • de Lima Lessa JH, Araujo AM, Ferreira LA, da Silva Júnior EC, de Oliveira C, Corguinha APB, Martins FAD, de Carvalho HWP, Guilherme LRG, Lopes G (2019) Agronomic biofortification of rice (Oryza sativa L.) with selenium and its effect on element distributions in biofortified grains. Plant Soil 444(1–2):331–342

    Google Scholar 

  • Descalsota-Empleo GI, Amparado A, Inabangan-Asilo MA, Tesoro F, Stangoulis J, Reinke R, Swamy BPM (2019) Genetic map** of QTL for agronomic traits and grain mineral elements in rice. Crop J 7:560–572. https://doi.org/10.1016/j.cj.2019.03.002

    Google Scholar 

  • Descalsota GIL, Swamy BPM et al (2018) Genome-wide association map** in a rice magic plus population detects QTLs and genes useful for biofortification. Front Plant Sci 9:1347. https://doi.org/10.3389/fpls.2018.01347

    Article  PubMed  PubMed Central  Google Scholar 

  • De-**an Kok A, Yoon LL, Sekeli R, Yeong WC, Yusof ZN, Song LK (2018) Iron biofortification of rice: progress and prospects. https://doi.org/10.5772/intechopen.73572

  • Díaz-Benito P, Banakar R, Rodríguez-Menéndez S, Capell T, Pereiro R, Christou P, Abadía J, Fernández B, Álvarez-Fernández A (2018) Iron and zinc in the embryo and endosperm of rice (Oryza sativa L.) seeds in contrasting 2′-deoxymugineic acid/nicotianamine scenarios. Front Plant Sci 9:1190. https://doi.org/10.3389/fpls.2018.01190

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixit S, Singh UM, Abbai R, Ram T, Singh VK, Paul A, Virk PS, Kumar A (2019) Identification of genomic region(s) responsible for high iron and zinc content in rice. Sci Rep 9:8136. https://doi.org/10.1038/s41598-019-43888-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos SS, de Araujo Júnior AT, Pegoraro C, de Oliveira AC (2017) Dealing with iron metabolism in rice: from breeding for stress tolerance to Biofortification. Genet Mol Biol 40(1):312–325

    PubMed  PubMed Central  Google Scholar 

  • Du J, Zeng D, Wang B, Qian Q, Zheng S, Ling HQ (2013) Environmental effects on mineral accumulation in rice grains and identification of ecological specific QTL. Environ Geochem Health 35:161–170

    CAS  PubMed  Google Scholar 

  • Dubock A (2017) An overview of agriculture, nutrition and fortification, supplementation and biofortification: Golden Rice as an example for enhancing micronutrient intake. Agric Food Secur 6:59

    Google Scholar 

  • Duy D, Stube R, Wanner G, Philippar K (2011) The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiol 155:1709–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebron G (2016) New GMO rice could fight iron, zinc deficiencies in develo** world. Genetic Literacy Project. https://www.geneticliteracyproject.org/2016/02/16/new-gmo-rice-could-fight-iron-zinc-deficiencies-in-develo**-world/

  • Fang Y, Zhang Y, Catron B, Chan Q, Hu Q, Caruso J (2009) Identification of selenium compounds using HPLC-ICPMS and nano-ESI-MS in selenium-enriched rice via foliar application. J Anal Atomic Spectrom 24:1657–1664

    CAS  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) III.ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Chander S, Ortiz R, Menkir A, Gedil M (2018) Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. Front Plant Sci 9:937

    PubMed  PubMed Central  Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12

    PubMed  PubMed Central  Google Scholar 

  • Gebremeskel S, Garcia-Oliveira AL, Menkir A, Adetimirin V, Gedil M (2018) Effectiveness of predictive markers for marker assisted selection of pro-vitamin A carotenoids in medium late maturing maize (Zea mays L.) in bred lines. J Cereal Sci 79:27–34

    CAS  Google Scholar 

  • Gemede HM (2014) Potential health benefits and adverse effects associated with phytate in foods. Food Sci Qual Manag 27:45–54

    Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gollhofer J, Timofeev R, Lan P, Schmidt W, Buckhout TJ (2014) Vacuolar-iron-transporter1-like proteins mediate iron homeostasis in Arabidopsis. PLoS One 9:e110468

    PubMed  PubMed Central  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17(3):282–286

    CAS  PubMed  Google Scholar 

  • Gregorio GB, Senadhira D, Htut H, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386. https://doi.org/10.1177/156482650002100407

    Article  Google Scholar 

  • Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and seleno cysteine: roles in cancer, health, and development. Trends Biochem Sci 39:112–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    CAS  PubMed  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    CAS  Google Scholar 

  • Higuchi K, Kanazawa K, Nishizawa NK, Chino M, Mori S (1994) Purification and characterization of nicotianamine synthase from Fe- deficient barley roots. Plant Soil 165:173–179

    CAS  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167

    CAS  PubMed  Google Scholar 

  • Hu Q, Chen L, Xu J, Zhang Y, Pan G (2002) Determination of selenium concentration in rice and the effect of foliar application of se enriched fertilizer or sodium selenite on the selenium content of rice. J Sci Food Agric 82(8):869–872

    CAS  Google Scholar 

  • Hu Y, Norton GJ, Duan G, Huang Y, Liu Y (2014) Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 384(1–2):131–140

    CAS  Google Scholar 

  • Hu BL, Huang DR, ** QTLs for mineral element contents in brown and milled rice using an Oryza sativa × O. rufipogon backcross inbred line population. Cereal Res Commun 44(1):57–68

    CAS  Google Scholar 

  • Huang Y, Sun C, Min J, Chen Y, Tong C, Bao J (2015) Association map** of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.). J Agric Food Chem 63(50):10885–10892

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    CAS  PubMed  Google Scholar 

  • Ishimaru Y et al (2006) Rice plants take up iron as an Fe3+ – phytosiderophore and as Fe2+. Plant J 45:335–346

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915

    CAS  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M et al (2010) Rice metal nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62(3):379–390

    CAS  PubMed  Google Scholar 

  • Jena J, Sethy P, Jena T, Misra SR, Sahoo SK, Dash GK, Palai JB (2018) Rice biofortification: a brief review. J Pharmacog Phytochem 7(1):2644–2647

    CAS  Google Scholar 

  • Jeng TL, Lin YW, Wang CS, Sung JM (2012) Comparisons and selection of rice mutants with high iron and zinc contents in their polished grains that were mutated from the indica type cultivar IR64. J Food Compos Anal 28:149–154

    CAS  Google Scholar 

  • Jiang W, Struik PC, Lingna J, Van Keulen H, Ming Z, Stomph TJ (2007) Uptake and distribution of root-applied or foliar-applied Zn after flowering in aerobic rice. Ann Appl Biol 150:383–391

    CAS  Google Scholar 

  • Jiang W et al (2008) Does increased zinc uptake enhance grain zinc mass concentration in rice? Ann Appl Biol 153:135–147

    CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E et al (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of Rice endosperm. PLoS One 6(9):e24476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson-Beebout SE, Lauren JG, Duxbury JM (2009) Immobilization of zinc fertilizer in flooded soils monitored by adapted DTPA soil test. Commun Soil Sci Plant Anal 40:1842–1861

    CAS  Google Scholar 

  • Karak T, Das DK, Maiti D (2006) Yield and zinc uptake in rice (Oryza sativa) as influenced by sources and times of zinc application. Indian J Agric Sci 76:346–348

    Google Scholar 

  • Kawakami Y, Bhullar NK (2018) Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice. J Integr Plant Biol 60:1–32

    Google Scholar 

  • Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H (2014) Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. J Exp Bot 65:871–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S (2001) In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta 212:864–871

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci U S A 104:19150–19155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Itai RN, Ogo Y, Kakei Y, Nakanishi H, Takahashi M, Nishizawa NK (2009) The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J 60:948–961

    CAS  PubMed  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S et al (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39(3):415–424

    Google Scholar 

  • Kumar A, Reddy BVS, Ramaiah B, Sanjana Reddy P, Sahrawat KL, Upadhyaya HD (2009) Genetic variability and plant character association of grain Fe and Zn in selected core collection accessions of sorghum germplasm and breeding lines. J SAT Agric Res. http://ejournal.icrisat.org/Volume7/Sorghum_Millets/SG702.pdf

  • Kumar S, Hash CT, Nepolean T, Mahendrakar MD, Satyavathi CT, Singh G, Rathore A, Yadav RS, Gupta R, Srivastava RK (2018) Map** grain iron and zinc content quantitative trait loci in an Iniadi derived immortal population of pearl millet. Genes 9:248

    PubMed Central  Google Scholar 

  • Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9

    CAS  Google Scholar 

  • Kuwano M, Ohyama A, Tanaka Y, Mimura T, Takaiwa F, Yoshida KT (2006) Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Mol Breed 18:263–272

    CAS  Google Scholar 

  • Kuwano M, Mimura T, Takaiwa F, Yoshida KT (2009) Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnol J 7:96–105

    PubMed  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416

    CAS  PubMed  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML et al (2009a) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150(2):786–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Jeon US, Lee SJ, Kim Y-K, Persson DP, Husted S et al (2009b) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106(51):22014–22019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim YS, Jeon US, Kim YK, Schjoerring JK, An G (2012) Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells 33(3):269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lephuthing MC, Baloyi TA, Sosibo NZ, Progress TTJ (2017) Challenges in improving nutritional quality in wheat. In: Wheat improvement, management and utilization. INTECH 2017:345–364.

    Google Scholar 

  • Lidon FC, Oliveira K, Ribeiro MM, Pelica J, Pataco I, Ramalho JC, Leitão AE, Almeida AS et al (2018) Selenium biofortification of rice grains and implications on macronutrients quality. J Cereal Sci 81:22–29

    CAS  Google Scholar 

  • Liu QL, Xu XH, Ren XL, Fu HW, Wu DX, Shu QY (2007) Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L). Theor Appl Genet 114:803–814

    CAS  PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21(3):184S–190S

    CAS  PubMed  Google Scholar 

  • Lyons GH, Lewis J, Lorimer MF, Holloway RE, Brace MD, Graham RD, Stangoulis JCR (2004) High-selenium wheat: agronomic biofortification strategies to improve human nutrition. Food Agric Env 2:171–178

    Google Scholar 

  • Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80

    CAS  Google Scholar 

  • Mabesa RL, Impa SM, Grewal D, Johnson-Beebout SE (2013) Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crop Res 149:223–233

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Masuda H, Suzuki M, Morikawa KC, Kobayashi T, Nakanishi H, Takahashi M et al (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1(1):100–108

    Google Scholar 

  • Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2(4):155–166

    Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2(1):543

    PubMed  PubMed Central  Google Scholar 

  • Masuda H, Aung M, Nishizawa NK (2013a) Iron biofortification of rice using different transgenic approaches. Rice 6(1):40

    PubMed  PubMed Central  Google Scholar 

  • Masuda H, Kobayashi T, Ishimaru Y, Takahashi M, Aung MS, Nakanishi H et al (2013b) Iron biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front Plant Sci 4(1):132

    PubMed  PubMed Central  Google Scholar 

  • Masuda H, Shimoshi E, Hamada T, Senoura T, Kobayashi T, Aung MS et al (2017) A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS One 12(3):e0173441

    PubMed  PubMed Central  Google Scholar 

  • Masuda H, Aung MS, Kobayashi T, Hamada T, Nishizawa NK (2019) Enhancement of iron acquisition in rice by the mugineic acid synthase gene with ferric iron reductase gene and OsIRO2 confers tolerance in submerged and nonsubmerged calcareous soils. Front Plant Sci 10:1179. https://doi.org/10.3389/fpls.2019.01179

    Article  PubMed  PubMed Central  Google Scholar 

  • McGrath SP, Loveland PJ (1992) Soil geochemical atlas of England and Wales. Blackie Academic and Professional, Glasgow

    Google Scholar 

  • Meng L, Zhao X, Ponce K, Ye G, Leung H (2016) QTL map** for agronomic traits using multi-parent advanced generation inter-cross (MAGIC) populations derived from diverse elite indica rice lines. Field Crop Res 189:19–42. https://doi.org/10.1016/j.fcr.2016.02.004

    Article  Google Scholar 

  • Mihashi S, Mori S (1989) Characterization of mugineic acid-Fe transporter in Fe-deficient barley roots using the multicompartment transport box method. Biol Metals 2:164–154

    Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci 102(33):11934–11939

    CAS  PubMed  Google Scholar 

  • Mitchell-Olds T (2010) Complex-trait analysis in plants. Genome Biol 11:113

    PubMed  PubMed Central  Google Scholar 

  • Moran K (2004) Micronutrient product types and their development. No 545. International Fertiliser Society, York, pp 1–24

    Google Scholar 

  • Mouta ER, Melo WJ, Soares MR, LRF A, Casagrande JC (2008) Adsorc¸a˜o de seleˆnio em latossolos. Revista Brasileira de Cieˆncia do Solo 32:1033–1041

    CAS  Google Scholar 

  • Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000) Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol 44:199–207

    CAS  PubMed  Google Scholar 

  • Nordborg M, Tavaré S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90. https://doi.org/10.1016/S0168-9525(02)02557-X

    Article  CAS  PubMed  Google Scholar 

  • Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SR et al (2014) Genome wide association map** of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 9:e89685

    PubMed  PubMed Central  Google Scholar 

  • Norton GJ, Deacon CM, ** of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153. https://doi.org/10.1007/s11104-009-0141-8

    Article  CAS  Google Scholar 

  • Nouet C, Motte P, Hanikenne M (2011) Chloroplastic and mitochondrial metal homeostasis. Trends Plant Sci 16:395–404. https://doi.org/10.1016/j.tplants.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878

    CAS  PubMed  Google Scholar 

  • Ogo Y, Nakanishi Itai R, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51:366–377

    CAS  PubMed  Google Scholar 

  • Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605

    CAS  PubMed  Google Scholar 

  • Oliva N, Chadha-Mohanty P, Poletti S, Abrigo E, Atienza G, Torrizo L et al (2014) Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Mol Breed 33(1):23–37

    CAS  PubMed  Google Scholar 

  • Oliveira K, Pataco IM, Mourinho MP, Santos C, Pelica J, Ramalho JC, Leitão AE, Pais IP, Campos PS, Lidon FC, Reboredo FH, Pessoa MF (2015) Selenium biofortification in rice – a pragmatic perspective. Emirates J Food Agric 27(3):231–241

    Google Scholar 

  • Palanisamy S (2018) Genetic analysis of biofortification of micronutrient breeding in rice (Oryza sativa L.). https://doi.org/10.5772/intechopen.72810

  • Palmgren MG, Edenbrandt AK, Vedel SE, Andersen MM, Landes X, Østerberg JT et al (2015) Are we ready for back-to-nature crop breeding? Trends Plant Sci 20:155–164

    CAS  PubMed  Google Scholar 

  • Paltridge NG, Palmer LJ, Milham PJ, Guild GE, Stangoulis JC (2012) Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grain. Plant Soil 361:251–260

    CAS  Google Scholar 

  • Paul S, Ali N, Gayen D, Datta SK, Datta K (2012) Molecular breeding of Osfer2 gene to increase iron nutrition in rice grain. GM Crops Food 3:310–316

    PubMed  Google Scholar 

  • Paul J, Khanna H, Kleidon J, Hoang P et al (2017) Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnol J 15:520–532

    CAS  PubMed  Google Scholar 

  • Perera I, Seneweera S, Hirotsu N (2018) Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice 11:4

    PubMed  PubMed Central  Google Scholar 

  • Persson DP, Hansen TH, Laursen KH, Schjoerring JK, Husted S (2009) Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC- ICP-MS and IP-ICP-MS. Metallomics 1:418–426

    CAS  PubMed  Google Scholar 

  • Phattarakul N, Rerkasem B, Li LJ, Wu LH, Zou CQ, Ram H, Sohu VS, Kang BS, Surek H, Kalayci M, Yazici A, Zhang FS, Cakmak I (2012) Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361:131–141

    CAS  Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    CAS  PubMed  Google Scholar 

  • Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poblaciones MJ, Rodrigo S, Santamaría O, Chen Y, McGrath SP (2014) Agronomic biofortification of selenium in Triticum durum under Mediterranean conditions: grain of cooked pasta. Chem Food 146:378–384

    CAS  Google Scholar 

  • Poggi V, Arcioni A, Filippini P, Pifferi PG (2000) Foliar application of selenite and selenate to potato (Solanum tuberosum): effect of a ligand agent on selenium content of tubers. J Agric Food Chem 48:4749–4751

    CAS  PubMed  Google Scholar 

  • Poletti S, Sautter C (2005) Biofortification of the crops with micronutrients using plant breeding and/or transgenic strategies. Minerva Biotecnol 17:1–11

    Google Scholar 

  • Powell K (2007) Functional foods from biotech-an unappetizing prospect? Nat Biotechnol 25(5):525–531

    CAS  PubMed  Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222(2):225–233

    CAS  Google Scholar 

  • Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64:1033–1043

    CAS  PubMed  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296

    CAS  Google Scholar 

  • Rajeevkumar S, Anunanthini P, Epigenetic SR (2015) Silencing in transgenic plants. Front Plant Sci 6(1):693

    PubMed  PubMed Central  Google Scholar 

  • Ramos SJ, Rutzke MA, Haynes RJ, Faquin V, Guilherme LRG, Li L (2011) Selenium accumulation in lettuce germplasm. Planta 233:649–660

    CAS  PubMed  Google Scholar 

  • Rao DS et al (2014) Assessment of grain zinc and iron variability in rice germplasm using energy dispersive x-ray fluorescence spectrophotometer (ED-XRF). J Rice Res 7:45

    Google Scholar 

  • Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res 60:27–40

    Google Scholar 

  • Rios JJ, Blasco B, Rosales MA, Sanchez-Rodriguez E, Leyva R, Cervilla LM, Romero L, Ruiz JM (2010) Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. J Sci Food Agric 90:1914–1919

    CAS  PubMed  Google Scholar 

  • Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54

    CAS  PubMed  Google Scholar 

  • Rommens CM (2007) Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. J Agric Food Chem 55:4281–4288

    CAS  PubMed  Google Scholar 

  • Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144–157

    PubMed  PubMed Central  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24

    Google Scholar 

  • Sadeghzadeh B (2013) A review of zinc nutrition and plant breeding. J Soil Sci Plant Nutr 13:905–927

    Google Scholar 

  • Shahzad Z, Rouached H, Rakha A (2014) Compr Rev Food Sci Food Saf 13:329–346

    CAS  Google Scholar 

  • Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Romheld V, Zou C (2010) Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J Cereal Sci 51:165–170

    CAS  Google Scholar 

  • Silveira VC, Fadanelli C, Sperotto RA, Stein RJ, Basso LA, Santos DS, Vaz Junior IDS, Dias JF, Fett JP (2009) Role of ferritin in the rice tolerance to iron overload. Sci Agric 66:549–555

    Google Scholar 

  • Singh SP, Gruissem W, Bhullar NK (2017) Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Sci Rep 7:6883

    PubMed  PubMed Central  Google Scholar 

  • Singh MK, Prasad SK (2014) Agronomic aspects of zinc biofortification in rice (Oryza sativa L). Proc Natl Acad Sci India Sect B Biol Sci 84:613–623

    Google Scholar 

  • Slaton NA, Wilson CE Jr, Ntamatungiro S, Norman RJ, Boothe DL (2001) Evaluation of zinc seed treatments for rice. Agron J 93:152–157

    CAS  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T et al (2005a) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    CAS  PubMed  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005b) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    CAS  PubMed  Google Scholar 

  • Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294

    Google Scholar 

  • Storozhenko S, De Brouwer V, Volckaert M, Navarrete O et al (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 11:1277–1279

    Google Scholar 

  • Subedi P, Shrestha J (2015) Improving soil fertility through Azolla application in low land rice: a review. Azarian J Agric 2:35–39

    Google Scholar 

  • Sun GX, Liu X, Williams PN, Zhu YG (2010) Distribution and translocation of selenium from soil to grain and its speciation in paddy rice (Oryza sativa L.). Environ Sci Technol 44:6706–6711

    CAS  PubMed  Google Scholar 

  • Suwarto N (2011) Genotype × environment interaction for iron concentration of rice in central Java of Indonesia. Rice Sci 18:75–78

    Google Scholar 

  • Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Gene 405:55–64

    CAS  PubMed  Google Scholar 

  • Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S et al (2008) Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr 54(1):77–85

    CAS  Google Scholar 

  • Swamy BPM, Rahman MA, Inabangan-Asilo MA, Amparado A, Manito C, Chadha-Mohanty P et al (2016) Advances in breeding for high grain Zinc in rice. Rice 9:49

    PubMed  PubMed Central  Google Scholar 

  • Swamy BPM, Descalsota GI, Thanh Nha C, Amparado A, AnnInabangan-Asilo M, Manito C, Tesoro F, Reinke R (2018) Identification of genomic regions associated with agronomic and biofortification traits in DH population sofrice. https://doi.org/10.1371/journal.pone.0201756

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469. https://doi.org/10.1038/88143

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theil EC (2011) Iron homeostasis and nutritional iron deficiency. J Nutr 141(4):724S–728S

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C et al (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6(1):19792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usuda K, Wada Y, Ishimaru Y, Kobayashi T, Takahashi M, Nakanishi H, Nagato Y, Mori S, Nishizawa NK (2009) Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotechnol J71:87–95

    Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164(3):371–378

    CAS  Google Scholar 

  • Vasconcelos MW, Gruissem W, Bhullar NK (2017) Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr Opin Biotechnol 44:8–15

    CAS  PubMed  Google Scholar 

  • Velu G, Monasterio I, Singh RP, Payne T (2011) Variation for grain micronutrients in wheat core collections accession of diverse origin. Asian Journal of Crop Science 3:43–48

    Google Scholar 

  • Veum TL, Ledoux DR, Shannon MC, Raboy V (2009) Effect of graded levels of iron, zinc, and copper supplementation in diets with low-phytate or normal barley on growth performance, bone characteristics, hematocrit volume, and zinc and copper balance of young swine. J Anim Sci 87:2625–2634

    CAS  PubMed  Google Scholar 

  • Vigani G, Tarantino D, Murgia I (2013) Mitochondrial ferritin is a functional iron-storage protein in cucumber (Cucumis sativus) roots. Front Plant Sci 4:316

    PubMed  PubMed Central  Google Scholar 

  • Wairich A, de Oliveira BHN, Arend EB, Duarte GL, Roani Ponte L, Sperotto RA, Ricachenevsky FK, Fett JP (2019) The combined strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Sci Rep 9:16144. https://doi.org/10.1038/s41598-019-52502-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker EL, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11:530–535

    CAS  PubMed  Google Scholar 

  • Wang Y, Wei Y, Dong L, Lu L, Feng Y, Zhang J, Pan F, Yang F (2014) Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management. Zhejiang Univ Sci B 15:365–374. https://doi.org/10.1631/jzus.B1300263

    CAS  Google Scholar 

  • Wang YD, Wang X, Wong YS (2013) Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilization with selenite. Food Chem 141:2385–2393

    CAS  PubMed  Google Scholar 

  • Wei Y, Shohag MJI, Yang X (2012) Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar Zinc fertilization. PLoS One 7(9):e45428

    CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front Plant Sci 2:1–11. https://doi.org/10.3389/fpls.2011.00080

    Article  Google Scholar 

  • Williams PN, Lombi E, Sun GX, Scheckel K, Zhu YG, Feng X, Zhu J, Carey A, Adomako E, Lawgali Y, Deacon C, Meharg AA (2009) Selenium characterization in the global supply chain of rice. Environ Sci Technol 43:6024–6030

    CAS  PubMed  Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7(7):631–644

    CAS  PubMed  Google Scholar 

  • Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 306:37–48

    CAS  Google Scholar 

  • Wu CY, Lu LL, Yang XE, Geng Y, Wei YY, Hao HL, Stoffella PJ, He ZL (2010) Uptake translocation and remobilization Zinc absorbed at different growth stages by rice genotypes of different Zn densities. J Agric Food Chem 58:6767–6773. https://doi.org/10.1021/jf100017e

    CAS  PubMed  Google Scholar 

  • Wu L, Shhadi MY, Gregorio G, Matthus E, Becker M, Frei M (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7:8

    PubMed  PubMed Central  Google Scholar 

  • Xu Q, Zheng TQ, Hu X, Cheng LR, Xu JL, Shi YM, Li ZK (2015) Examining two sets of introgression lines in rice (Oryza sativa L.) reveals favorable alleles that improve grain Zn and Fe concentrations. PLoS One 10:e0131846

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Huang J, Jiang Y, Zhang HS (2007) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36(2):381–287

    Google Scholar 

  • Yang M, Lu K, Zhao FJ, **e W, Ramakrishna P, Wang G, Du Q, Liang L, Sun C, Zhao H et al (2018) Genome-wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell 30:2720–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Kauffman KJ, Anderson DG (2017) Delivery technologies for genome editing. Nat Rev Drug Discov 16(6):387–399

    CAS  PubMed  Google Scholar 

  • Yoneyama T, Ishikawa S, Fujimaki S (2015) Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: Metal transporters, metal speciation, grain cd reduction and Zn and Fe biofortification. Int J Mol Sci 16:19111–19129. https://doi.org/10.3390/ijms160819111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YH, Shao YF, Liu J, Fan YY, Sun CX, Cao ZY, Zhuang JY (2015) Map** of quantitative trait loci for contents of macro and micro-elements in milled rice (Oryza sativa L.). J Agric Food Chem 63:7813–7818

    CAS  PubMed  Google Scholar 

  • Zhang J, Wu L, Wang M (2008) Can iron and zinc in rice grains (Oryza sativa L.) be biofortified with nitrogen fertilization under pot conditions? J Sci Food Agric 88:1172–1177

    CAS  Google Scholar 

  • Zhang Y, Xu YH, Yi HY, Gong JM (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72(3):400–410

    CAS  PubMed  Google Scholar 

  • Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201:1183–1119

    CAS  PubMed  Google Scholar 

  • Zhang J, Chen K, Pang Y, Naveed SA, Zhao X, Wang X et al (2017) QTL map** and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study Jian. BMC Genomics 18:828. https://doi.org/10.1186/s12864-017-4221-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Wang JK, Yi Q, Wang YZ, Zhu YG, Zhang ZH (2007) Quantitative trait loci for seedling vigor in rice under field conditions. Field Crop Res 100:294–301. https://doi.org/10.1016/j.fcr.2006.08.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hasanzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasanzadeh, M., Hazrati, N. (2020). Improvement of Rice Quality via Biofortification of Micronutrients. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5337-0_33

Download citation

Publish with us

Policies and ethics

Navigation