Potassium Solubilization and Mobilization: Functional Impact on Plant Growth for Sustainable Agriculture

  • Chapter
  • First Online:
Advances in Plant Microbiome and Sustainable Agriculture

Abstract

To attain the sustained agriculture production, soil fertility, and its nutrient status should be optimal. Potassium is a crucial component of plant nutrition package that also limits crop quality and yield. Despite the sufficient level of K in soil, its deficiency is mainly because of inefficient utilization of different available forms by plants. The occurrence of potassium in complex mineral forms hinders its utility for plant growth. The plants have to face numerous deficiency symptoms due to unavailability of sufficient potassium required for their metabolism, which checks the productivity of crop. The potassium-solubilizing bacteria act as biofertilizers and can provide a sustainable solution to mineral deficiency in plants. Plant growth promoting (PGP) bacteria can help in K solubilization in soil due to their versatile requirement for environmental and nutritional condition. The present study focused on overview on current trends, K-solubilizing mechanism and ability for growth promotion along with their present constraint and future scope to achieve sustainable agriculture production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Salam MA, Shams AS (2012) Feldspar-K fertilization of potato (Solanum tuberosum L.) augmented by biofertilizer. J Agric Environ Sci 12:694–699

    CAS  Google Scholar 

  • Abou-el-Seoud I, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea mays) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Google Scholar 

  • Aleksandrov VG, Blagodyr RN, Ilev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Zh 29:111–114

    CAS  PubMed  Google Scholar 

  • Anjanadevi IP, John NS, John KS, Jeeva ML, Misra RS (2016) Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. J Basic Microbiol 56:67–77

    CAS  PubMed  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2012) Screening of potassium solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet 9(4):627–630

    Google Scholar 

  • Archana D, Nandish M, Savalagi V, Alagawadi A (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong DL (1998) Better crops with plant food. 82(3):3–40

    Google Scholar 

  • Arnold PW (1960) Nature and mode of weathering of soil-potassium reserve. J Sci Food Agric 11(6):285–292

    CAS  Google Scholar 

  • Ashley DA, Goodson RD (1972) Effect of time and plant potassium status on 14C-labeled photosynthate movement in cotton. Crop Sci 12:686–690

    CAS  Google Scholar 

  • Badr MA (2006) Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. J Appl Sci Res 2:1191–1198

    Google Scholar 

  • Badr MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agri Biol Sci 2:5–11

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Balamurugan A (2012) Impact of different temperature, carbon and nitrogen sources on solubilization efficiency of native potassium solubilizing bacteria from tea (Camellia sinensis). J Biol Res 3:36–42

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Balamurugan A (2017) Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian Tea plantation soil. Biocatal Agric Biotechnol 12:116–124

    Google Scholar 

  • Baker DA, Weatherley PE (1969) Water and solute transport by exuding root systems of Ricinus communis. J Exp Bot 20:485–496

    CAS  Google Scholar 

  • Barker WW, Banfield JF (1998) Zones of chemical and physical interaction at interfaces between microbial communities and minerals. Geomicrobiology 15:223–244

    CAS  Google Scholar 

  • Barker WW, Welch SA, Banfield JF (1997) Geomicrobiology of silicate minerals weathering. Rev Mineral Geochem 35:391–428

    CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317(1-2):235–255

    Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Google Scholar 

  • Basak B, Biswas D (2012) Modification of waste mica for alternative source of potassium: evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). LAP LAMBERT Academic Publishing, Saarbrücken

    Google Scholar 

  • Bednarz CW, Oosterhuis DM (1999) Physiological changes associated with potassium deficiency in cotton. J Plant Nutr 22:303–313

    Google Scholar 

  • Blatt MR (1988) Potassium-dependent, bipolar gating of K+ channels in guard cells. J Membr Biol 102:235–246

    Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    PubMed  Google Scholar 

  • Dong X, Lv L, Wang W, Liu W, Yin C, Xu Q et al (2019) Differences in distribution of potassium-solubilizing bacteria in forest and plantation soils in Myanmar. Int J Environ Res Public Health 16:700

    CAS  PubMed Central  Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015) Indole-3-acetic acid and 1 amino cyclopropane- 1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria, bacterial metabolites in sustainable agroecosystem. In: Maheshwari D (ed) bacterial metabolites in sustainable agroecosystem. Sustainable development and biodiversity, vol 12. Springer, Cham, pp 183–258

    Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB). Mechanisms, promotion of plant growth, and future prospects – A review. J Soil Sci Plant Nutr 17(4):897–911

    CAS  Google Scholar 

  • Fuchs WH and Grossmann F (1972). Ernährung und resistenz von kulturpflanzen gegenüber krankheitserregern und schädlingen [Nutrition and resistance of crop plants against pathogens and pests]. In: H Linser (ed) Handbuch der pflanzenernährung und düngung, 1(2); Springer, Vienna, pp 1008–1107

    Google Scholar 

  • Gallegos-Cedillo VM, Urrestarazu M, Álvaro JE (2016) Influence of salinity on transport of Nitrates and Potassium by means of the xylem sap content between roots and shoots in young tomato plants. J Soil Sci Plant Nutr 16(4):991–998

    CAS  Google Scholar 

  • Ghosh AB, Hasan R (1976) Available potassium status of Indian soils. In: Potassium in soils, crops and fertilizers. Indian Soc. of Soil Science, New Delhi

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:963401

    Google Scholar 

  • Gordon SJ (2005) Effect of environmental factors on the chemical weathering of plagioclase in Hawaiian Basalt. Phys Geogr 26:69–84

    Google Scholar 

  • Graham RD, Ulrich A (1972) Potassium deficiency-induced changes in stomatal behavior, leaf water potentials, and root system permeability in Beta vulgaris L. Plant Physiol 49:105–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. J Microbiol Biotechnol 2:1–7

    Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    Google Scholar 

  • Hartt CE (1969) Effect of potassium deficiency upon translocation of C in attached blades and entire plants of sugarcane. Plant Physiol 44:1461–1469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazen TC, Jimenez L, Victoria GL (1991) Comparison of bacteria from deep subsurface sediment and adjustment groundwater. Microb Ecol 22:293–304

    CAS  PubMed  Google Scholar 

  • Holm PE, Nielsen PH, Albrechtsen HJ, Christensen TH (1992) Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer. Appl Environ Microbiol 58(9):3020–3026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holthusen D, Peth S, Horn R (2010) Impact of potassium concentration and matric potential on soil stability derived from rheological parameters. Soil Tillage Res 111:75–85

    Google Scholar 

  • Huang Z, He L, Sheng X, He Z (2013) Weathering of potash feldspar by Bacillus sp. L11. Wei sheng wu xue bao. Acta Microbiol Sin 53:1172–1178

    CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, Van Hees PAW (2003) Organic acid behavior in soils–misconceptions and knowledge gaps. Plant and Soil 248:31–41

    CAS  Google Scholar 

  • Kevin H (1999) The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology 31:47

    Google Scholar 

  • Kloepper JW, Zablotowicz RM, Tip** EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishing, Dordrecht, pp 315–326

    Google Scholar 

  • Krishnamurthy HA (1989) Effect of pesticides on phosphate solubilizing microorganisms, M. Sc.(Agric.) thesis. University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Leaungvutiviroj C, Ruangphisarn P, Hansanimitkul P, Shinkawa H, Sasaki K (2010) Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Biosci Biotechnol Biochem 74(5):1098–1101

    CAS  PubMed  Google Scholar 

  • Lian BFPQ, Mo DM, LiuA CQ (2002) Comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–182

    CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, **ng LJ (2002) Identification and practical application of silicate – dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    CAS  Google Scholar 

  • Lopes-Assad ML, Avansini SH, Rosa MM, de Carvalho JR, Ceccato-Antonini SR (2010) The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Can J Microbiol 56(7):598–605

    CAS  PubMed  Google Scholar 

  • Lynn TM, Win HS, Kyaw EP, Latt ZK, Yu SS (2013) Characterization of phosphate solubilizing and potassium decomposing strains and study on their effects on tomato cultivation. Int J Innov Appl Stud 3:959–966

    Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    PubMed  PubMed Central  Google Scholar 

  • Man LY, Cao XY, Sun DS (2014) Effect of potassium-solubilizing bacteria-mineral contact mode on decomposition behavior of potassium-rich shale. Chin J Nonferrous Met 24:48–52

    Google Scholar 

  • Manning DA (2010) Mineral sources of potassium for plant nutrition. A review. Agron Sustain Dev 30(2):281–294

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of inceptisol and alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Doesa rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015a) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2015b) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Meena RS (2016) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Acad. Publishers, Dordrecht, p 849

    Google Scholar 

  • Muthukumarasamy R, Revathi G, Vadivelu M, Arun K (2017) Isolation of bacterial strains possessing nitrogen-fixation, phosphate and potassium-solubilization and their inoculation effects on sugarcane. Indian J Exp Biol 55(3):161–170

    CAS  PubMed  Google Scholar 

  • Oborn I, Andrist-Rangel Y, Askekaard M, Grant CA, Watson CA, Edwards AC (2005) Critical aspects of potassium management in agricultural systems. Soil Use Manage 21:102–112

    Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. Plant and Soil 179:141–150

    CAS  Google Scholar 

  • Park M, Singvilay O, Seok Y, Chung J, Ahn K, Sa T (2003) Effect of phosphate solubilizing fungi on P uptake and growth to tobacco in rock phosphate applied soil. Korean J Soil Sci Fertil 36:233–238

    CAS  Google Scholar 

  • Parmar P (2010) Isolation of potassium solubilizing bacteria and their inoculation effect on growth of wheat (Triticum aestivum L. em. Thell.). M. Sc. thesis submitted to CCS Haryana Agri Cultural University. Hisar

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Pathak H, Mohanty S, Jain N, Bhatia A (2010) Nitrogen, phosphorus, and potassium budgets in Indian agriculture. Nutr Cycl Agroecosyst 86(3):287–299

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Google Scholar 

  • Peoples TR, Koch DW (1979) Role of potassium in carbon dioxide assimilation in Medicago sativa L. Plant Physiol 63:878–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrenoud S (ed) (1990) Potassium and plant health, vol 3. International Potash Institute, Basel

    Google Scholar 

  • Pfluger R, Cassier A (1977) Influence of monovalent cations on photosynthetic CO2-fixation. In: International Potash Institute (ed) 13th Colloquium of IPI, Horgen, pp 95–100

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leaflets 5:71–75

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on okra (Abelmoscus esculantus). Int J Agri Sci Res 1:181–188

    Google Scholar 

  • Rajawat MVS, Singh S, Singh G, Saxena AK (2012) Isolation and characterization of K-solubilizing bacteria isolated from different rhizospheric soil. In: Proceeding of 53rd annual conference of Association of Microbiologists of India, p 124

    Google Scholar 

  • Ramamurthy B, Bajaj JC (1969) Soil fertility map of India. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Ramamurthy V, Naidu LGK, Ravindra Chary G et al (2017) Potassium status of Indian soils: need for rethinking in research, recommendation and policy. Int J Curr Microbiol App Sci 6(12):1529–1540

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant and Soil 335:155–180

    Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Saiyad SA, Jhala YK, Vyas RV (2015) Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. Int J Sci Res Publ 5:1–6

    Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromatic Crop 21:118–124

    Google Scholar 

  • Savaliya NV, Mathukia RK, Solanki JN, Barasiya RA (2017) Response of wheat (Triticum aestivum) to phosphate and potash solubilizing Bacteria on calcareous clayey soil. Int J Pure & Applied Biosci 5(6):247–251

    Google Scholar 

  • Schiavon M, Pizzeghello D, Muscolo A, Vaccoro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36:662–669

    CAS  PubMed  Google Scholar 

  • Shelobolina E, Xu H, Konishi H, Kukkadapu R, Wu T, Blöthe M, Roden E (2012) Microbial lithotrophic oxidation of structural Fe (II) in biotite. Appl Environ Microbiol 78:5746–5752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng X (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    CAS  Google Scholar 

  • Sheng XF, Haung WY (2002) Mechanism of potassium release from feldspar affected by the strain of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, He LY (2005) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2001) Physiological characteristics of strain NBT of silicate bacterium. Acta Pedol Sin 38:569–574

    CAS  Google Scholar 

  • Sheng XF, Zhao F, He H, Qiu G, Chen L (2008) Isolation, characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surface of weathered feldspar. Can J Microbiol 54:1064–1068

    CAS  PubMed  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci U S A 101:8827–8832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer Wien, New York, pp 195–235

    Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 201–276

    Google Scholar 

  • Srinivasrao CH, Satyanarayana T, Venkateswarulu B (2011) Potassium mining in Indian agriculture: input and output balance. Karnataka J Agric Sci 24:20–28

    Google Scholar 

  • Stephen T (1930) “The mechanics of frost heaving” (PDF). J Geol 38(4):303–315

    Google Scholar 

  • Styriakova I, Styriak I, Galko D, Hradil D, Bezdicka P (2003) The release of iron-bearing minerals and dissolution of feldspar by heterotrophic bacteria of Bacillus species. Ceramics Silicáty 47:20–26

    CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    CAS  PubMed  Google Scholar 

  • Van Veen JA, Marckx R, Van de Gejn SC (1989) Plant and soil related controls of flow of carbon from roots through the soil microbial biomass. Plant and Soil 115:179–188

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for Green Revolution: Volume 1: Microbes for sustainable crop production. Springer Singapore, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

    Chapter  Google Scholar 

  • Wang JG, Zhang FS, Zhang XL, Cao YP (2000) Release of potassium from K-bearing minerals: effect of plant roots under P deficiency. Nutr Cycl Agroecosyst 56:45–52

    Google Scholar 

  • Welch SA, Vandevivere P (1994) Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiol J 12:227–238

    CAS  Google Scholar 

  • Willer H, Lernoud J (2017) Organic agriculture worldwide. Current Statistics; Research Institute of Organic Agriculture (FiBL), Frick

    Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Google Scholar 

  • Wyn Jones RJ, Pollard A (1983) Proteins, enzymes and inorganic ions. In: Lauchli A, Pirson A (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 528–562

    Google Scholar 

  • **ao Y, Wang X, Chen W, Huang Q (2017) Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol J 34:1–8

    Google Scholar 

  • Yamashita T, Fujiwara A (1967) Metabolism of acetate-1-14C in excised leaves from potassium deficient rice seedlings. Plant Cell Physiol 8:557–565

    CAS  Google Scholar 

  • Youssef GH, Seddik WMA, Osman MA (2010) Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. J Am Sci 6:647–660

    Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013a) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agro Soil Sci 77:7569

    Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013b) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    Google Scholar 

  • Zeng X, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium-solubilizing ability of Bacillus circulans Z 1–3. Adv Sci Lett 10:173–176

    Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Google Scholar 

  • Zhang A, Zhao G, Gao T, Wang W, Li J, Zhang S, Zhu B (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7:41–47

    Google Scholar 

  • Zhao F, Sheng XF, Huang Z, He L (2008) Isolation of mineral potassium solubilizing bacterial strains from agricultural soils in Shandong province. Biodivers Sci 16:593–600

    Google Scholar 

  • Zhao S, Li K, Zhou W, Qiu S, Huang S, He P (2016) Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric Ecosyst Environ 216:82–88

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Vivekanada Parvatiya Krishi Anusandhan Sansthan, ICAR for the direction and suggestion for this type research works that are more important for sustainable agriculture.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khati, P. et al. (2020). Potassium Solubilization and Mobilization: Functional Impact on Plant Growth for Sustainable Agriculture. In: Yadav, A., Rastegari, A., Yadav, N., Kour, D. (eds) Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, vol 20. Springer, Singapore. https://doi.org/10.1007/978-981-15-3204-7_2

Download citation

Publish with us

Policies and ethics

Navigation