Gut Microbiota and Endocrine Disorder

  • Chapter
  • First Online:
Gut Microbiota and Pathogenesis of Organ Injury

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1238))

Abstract

The gut microbiome contains trillions of commensal microorganisms that maintain a symbiotic relationship with the host, and its profound effects on gastrointestinal diseases have been widely described. Recently, gut microbiota have emerged as important factors in endocrine system diseases. Disruption of the gut microbiota affects neuroendocrine homeostasis and promotes peripheral endocrine system diseases, including obesity, diabetes, and hyperuricemia. This chapter provides a comprehensive overview of the biological mechanisms of gut microbiota that participate in endocrine system pathologies and discusses potential novel therapies for these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gentile CL, Weir TL (2018) The gut microbiota at the intersection of diet and human health. Science 362:776–780

    Article  CAS  PubMed  Google Scholar 

  2. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335

    Article  CAS  PubMed  Google Scholar 

  4. Baumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535:85–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rook G, Backhed F, Levin BR, McFall-Ngai MJ, McLean AR (2017) Evolution, human-microbe interactions, and life history plasticity. Lancet 390:521–530

    Article  PubMed  Google Scholar 

  6. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  CAS  PubMed  Google Scholar 

  8. Browne HP, Neville BA, Forster SC, Lawley TD (2017) Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol 15:531–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Postler TS, Ghosh S (2017) Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab 26:110–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lagier JC, Dubourg G, Million M, Cadoret F, Bilen M, Fenollar F, Levasseur A, Rolain JM, Fournier PE, Raoult D (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 540–550

    Google Scholar 

  11. Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N, Martins AJ, Huang Y, Gerner MY, Belkaid Y, Germain RN (2018) Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554:255–259

    Article  CAS  PubMed  Google Scholar 

  12. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Newey PJ, Gorvin CM, Cleland SJ, Willberg CB, Bridge M, Azharuddin M, Drummond RS, van der Merwe PA, Klenerman P, Bountra C, Thakker RV (2013) Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med 369:2012–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Newell-Price J (2016) Pituitary gland: mortality in cushing disease. Nat Rev Endocr 12:502–503

    Article  Google Scholar 

  15. Coon SL, Munson PJ, Cherukuri PF, Sugden D, Rath MF, Moller M, Clokie SJ, Fu C, Olanich ME, Rangel Z, Werner T, Program NCS, Mullikin JC, Klein DC (2012) Circadian changes in long noncoding RNAs in the pineal gland. Proc Natl Acad Sci USA 109:13319–13324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hatori M, Hirota T, Iitsuka M, Kurabayashi N, Haraguchi S, Kokame K, Sato R, Nakai A, Miyata T, Tsutsui K, Fukada Y (2011) Light-dependent and circadian clock-regulated activation of sterol regulatory element-binding protein, X-box-binding protein 1, and heat shock factor pathways. Proc Natl Acad Sci USA 108:4864–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin–a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93:350–384

    Article  CAS  PubMed  Google Scholar 

  18. De Leo S, Lee SY, Braverman LE (2016) Hyperthyroidism. Lancet 388:906–918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lopez M, Varela L, Vazquez MJ, Rodriguez-Cuenca S, Gonzalez CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R, Martinez de Morentin PB, Tovar S, Nogueiras R, Carling D, Lelliott C, Gallego R, Oresic M, Chatterjee K, Saha AK, Rahmouni K, Dieguez C, Vidal-Puig A (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94:355–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vidal V, Sacco S, Rocha AS, da Silva F, Panzolini C, Dumontet T, Doan TM, Shan J, Rak-Raszewska A, Bird T, Vainio S, Martinez A, Schedl A (2016) The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes Dev 30:1389–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kohrle J, Jakob F, Contempre B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984

    Article  CAS  PubMed  Google Scholar 

  23. Kim T, Loh YP (2005) Chromogranin A: a surprising link between granule biogenesis and hypertension. J Clin Investig 115:1711–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, Li P, Olefsky JM (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171:372–384, e312

    Google Scholar 

  25. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93:1–21

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Ota N, Manzanillo P, Kates L, Zavala-Solorio J, Eidenschenk C, Zhang J, Lesch J, Lee WP, Ross J, Diehl L, van Bruggen N, Kolumam G, Ouyang W (2014) Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514:237–241

    Article  CAS  PubMed  Google Scholar 

  27. Khoshi A, Bajestani MK, Shakeri H, Goodarzi G, Azizi F (2019) Association of Omentin rs2274907 and FTO rs9939609 gene polymorphisms with insulin resistance in Iranian individuals with newly diagnosed type 2 diabetes. Lipids Health Dis 18:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gray SM, Niu J, Zhang A, Svendsen B, Campbell JE, D’Alessio DA, Tong J (2019) Intra-Islet ghrelin signaling does not regulate insulin secretion from adult mice. Diabetes 68(9):1795–1805

    Google Scholar 

  29. Zhou M, **g S, Wu CY, Shu L, Dong W, Liu Y, Chen M, Wynn RM, Wang J, Wang J, Gui WJ, Qi X, Lusis AJ, Li Z, Wang W, Ning G, Yang X, Chuang DT, Wang Y, Sun H (2019) Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes 68(9):1730–1746

    Google Scholar 

  30. Schirra J, Nicolaus M, Roggel R, Katschinski M, Storr M, Woerle HJ, Goke B (2006) Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut 55:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen PC, Inui A, Chen CY (2015) Paradoxical responses of plasma glucagon and bile acid levels after duodenal nutrient exclusion. Gut 64:516

    Article  CAS  PubMed  Google Scholar 

  32. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P (2015) Autoimmune thyroid disorders. Autoimmun Rev 14:174–180

    Article  CAS  PubMed  Google Scholar 

  33. Nieman LK, Ilias I (2005) Evaluation and treatment of Cushing’s syndrome. Am J Med 118:1340–1346

    Article  PubMed  Google Scholar 

  34. Lodish M, Stratakis CA (2016) A genetic and molecular update on adrenocortical causes of Cushing syndrome. Nat Rev Endocr 12:255–262

    Article  CAS  Google Scholar 

  35. Arregger AL, Cardoso EM, Zucchini A, Aguirre EC, Elbert A, Contreras LN (2014) Adrenocortical function in hypotensive patients with end stage renal disease. Steroids 84:57–63

    Article  CAS  PubMed  Google Scholar 

  36. de Loos WS (1996) Clinical problem-solving: identifying Addison’s disease. N Engl J Med 334:1403; author reply, 1404–1405

    Google Scholar 

  37. Matsumoto S, Hagiwara S, Kusaka J, Hasegawa R, Nonaka H, Shingu C, Noguchi T (2011) Catecholamine-resistant shock and hypoglycemic coma after cardiotomy in a patient with unexpected isolated ACTH deficiency. J Anesth 25:431–434

    Article  PubMed  Google Scholar 

  38. Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507–520

    Article  CAS  PubMed  Google Scholar 

  39. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359:1151–1156

    Article  CAS  PubMed  Google Scholar 

  40. Yang Q, Vijayakumar A, Kahn BB (2018) Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol 19:654–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Musso G, Cassader M, De Michieli F, Rosina F, Orlandi F, Gambino R (2012) Nonalcoholic steatohepatitis versus steatosis: adipose tissue insulin resistance and dysfunctional response to fat ingestion predict liver injury and altered glucose and lipoprotein metabolism. Hepatology 56:933–942

    Article  CAS  PubMed  Google Scholar 

  42. Johannsen DL, Tchoukalova Y, Tam CS, Covington JD, **e W, Schwarz J-M, Bajpeyi S, Ravussin E (2014) Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the “Adipose Tissue Expandability” hypothesis. Diabetes Care 37:2789–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buki KG, Bauer PI, Kun E (1997) Isolation and identification of a proteinase from calf thymus that cleaves poly(ADP-ribose) polymerase and histone H1. Biochem Biophys Acta 1338:100–106

    CAS  PubMed  Google Scholar 

  44. So A, Thorens B (2010) Uric acid transport and disease. J Clin Investig 120:1791–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carnovale C, Venegoni M, Clementi E (2014) Allopurinol overuse in asymptomatic hyperuricemia: a teachable moment. JAMA Intern Med 174:1031–1032

    Article  PubMed  Google Scholar 

  46. Jeon HJ, Oh J, Shin DH (2019) Urate-lowering agents for asymptomatic hyperuricemia in stage 3–4 chronic kidney disease: controversial role of kidney function. PLoS ONE 14:e0218510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. El Aidy S, Dinan TG, Cryan JF (2015) Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther 37:954–967

    Article  CAS  PubMed  Google Scholar 

  48. Rieder R, Wisniewski PJ, Alderman BL, Campbell SC (2017) Microbes and mental health: a review. Brain Behav Immun 66:9–17

    Article  CAS  PubMed  Google Scholar 

  49. Martin-Villa JM (2014) Neuroendocrine stimulation of mucosal immune cells in inflammatory bowel disease. Curr Pharm Des 20:4766–4773

    Article  CAS  PubMed  Google Scholar 

  50. Caputi V, Giron MC (2018) Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int J Mol Sci 19

    Google Scholar 

  51. Farzi A, Frohlich EE, Holzer P (2018) Gut microbiota and the neuroendocrine system. Neurotherapeutics 15:5–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roman P, Rueda-Ruzafa L, Cardona D, Cortes-Rodriguez A (2018) Gut-brain axis in the executive function of austism spectrum disorder. Behav Pharmacol 29:654–663

    Article  CAS  PubMed  Google Scholar 

  53. Hooks KB, Konsman JP, O’Malley MA (2018) Microbiota-gut-brain research: a critical analysis. Behav Brain Sci 1–40

    Google Scholar 

  54. Gerhardt S, Mohajeri MH (2018) Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases. Nutrients 10

    Google Scholar 

  55. Moran CP, Shanahan F (2014) Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol 28:585–597

    Article  CAS  PubMed  Google Scholar 

  56. Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC (2015) Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 37:984–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kennedy PJ, Cryan JF, Dinan TG, Clarke G (2017) Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 112:399–412

    Article  CAS  PubMed  Google Scholar 

  59. Bhattarai Y (2018) Microbiota-gut-brain axis: interaction of gut microbes and their metabolites with host epithelial barriers. Neurogastroenterol Motil 30:e13366

    Article  CAS  PubMed  Google Scholar 

  60. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345

    Article  CAS  PubMed  Google Scholar 

  61. Bercik P (2011) The microbiota-gut-brain axis: learning from intestinal bacteria? Gut 60:288–289

    Article  PubMed  Google Scholar 

  62. Nankova BB, Agarwal R, MacFabe DF, La Gamma EF (2014) Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells–possible relevance to autism spectrum disorders. PLoS ONE 9:e103740

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhu H, Huang Q, Xu H, Niu L, Zhou JN (2009) Antidepressant-like effects of sodium butyrate in combination with estrogen in rat forced swimming test: involvement of 5-HT(1A) receptors. Behav Brain Res 196:200–206

    Article  CAS  PubMed  Google Scholar 

  64. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, Schwartz TW (2018) Enterochromaffin 5-HT cells—A major target for GLP-1 and gut microbial metabolites. Mol Metab 11:70–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rastelli M, Cani PD, Knauf C (2019) The gut microbiome influences host endocrine functions. Endocr Rev 40(5):1271–1284

    Google Scholar 

  67. Sun MF, Zhu YL, Zhou ZL, Jia XB, Xu YD, Yang Q, Cui C, Shen YQ (2018) Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: gut microbiota, glial reaction and TLR4/TNF-alpha signaling pathway. Brain Behav Immun 70:48–60

    Article  CAS  PubMed  Google Scholar 

  68. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A (2004) Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 141:874–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Das S, Sreevidya VS, Udvadia AJ, Gyaneshwar P (2019) Dopamine-induced sulfatase and its regulator are required for Salmonella enterica serovar Typhimurium pathogenesis. Microbiology 165:302–310

    Article  CAS  PubMed  Google Scholar 

  70. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cogan TA, Thomas AO, Rees LE, Taylor AH, Jepson MA, Williams PH, Ketley J, Humphrey TJ (2007) Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 56:1060–1065

    Article  CAS  PubMed  Google Scholar 

  72. Hyland NP, Cryan JF (2010) A gut feeling about GABA: focus on GABA(B) receptors. Front Pharmacol 1:124

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mazzoli R, Pessione E (2016) The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol 7:1934

    Article  PubMed  PubMed Central  Google Scholar 

  74. van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G, El Aidy S (2019) Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun 10:310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, Orlova VS, Danilenko VN (2016) GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42:197–204

    Article  CAS  PubMed  Google Scholar 

  76. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417

    Article  CAS  PubMed  Google Scholar 

  77. Polovinkin L, Hassaine G, Perot J, Neumann E, Jensen AA, Lefebvre SN, Corringer PJ, Neyton J, Chipot C, Dehez F, Schoehn G, Nury H (2018) Conformational transitions of the serotonin 5-HT3 receptor. Nature 563:275–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Israelyan N, Del Colle A, Li Z, Park Y, **ng A, Jacobsen JPR, Luna RA, Jensen DD, Madra M, Saurman V, Rahim R, Latorre R, Law K, Carson W, Bunnett NW, Caron MG, Margolis KG (2019) Effects of serotonin and slow-release 5-HTP on gastrointestinal motility in a mouse model of depression. Gastroenterology 157(2)

    Google Scholar 

  80. Schneider S, Wright CM, Heuckeroth RO (2019) Unexpected roles for the second brain: enteric nervous system as master regulator of bowel function. Annu Rev Physiol 81:235–259

    Article  PubMed  CAS  Google Scholar 

  81. Bliss ES, Whiteside E (2018) The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol 9:900

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wu Y, He H, Cheng Z, Bai Y, Ma X (2019) The role of neuropeptide Y and peptide YY in the development of obesity via gut-brain axis. Curr Protein Pept Sci 20(7):750–758

    Google Scholar 

  83. Zhang X, Grosfeld A, Williams E, Vasiliauskas D, Barretto S, Smith L, Mariadassou M, Philippe C, Devime F, Melchior C, Gourcerol G, Dourmap N, Lapaque N, Larraufie P, Blottiere HM, Herberden C, Gerard P, Rehfeld JF, Ferraris RP, Fritton JC, Ellero-Simatos S, Douard V (2019) Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism. FASEB J (Official publication of the Federation of American Societies for Experimental Biology) 33:7126–7142

    Article  CAS  Google Scholar 

  84. Ripken D, van der Wielen N, Wortelboer HM, Meijerink J, Witkamp RF, Hendriks HF (2016) Nutrient-induced glucagon like peptide-1 release is modulated by serotonin. J Nutr Biochem 32:142–150

    Article  CAS  PubMed  Google Scholar 

  85. de Clercq NC, Frissen MN, Groen AK, Nieuwdorp M (2017) Gut microbiota and the gut-brain axis: new insights in the pathophysiology of metabolic syndrome. Psychosom Med 79:874–879

    Article  PubMed  CAS  Google Scholar 

  86. Lach G, Schellekens H, Dinan TG, Cryan JF (2018) Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics 15:36–59

    Article  CAS  PubMed  Google Scholar 

  87. Klingbeil E, de La Serre CB (2018) Microbiota modulation by eating patterns and diet composition: impact on food intake. Am J Physiol Regul Integr Comp Physiol 315:R1254–R1260

    Article  CAS  PubMed  Google Scholar 

  88. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Meng S, Badrinarain J, Sibley E, Fang R, Hodin R (2001) Thyroid hormone and the d-type cyclins interact in regulating enterocyte gene transcription. J Gastrointest Surg 5:49–55

    Article  CAS  PubMed  Google Scholar 

  90. Virili C, Centanni M (2017) “With a little help from my friends” - The role of microbiota in thyroid hormone metabolism and enterohepatic recycling. Mol Cell Endocrinol 458:39–43

    Article  CAS  PubMed  Google Scholar 

  91. Patil AD (2014) Link between hypothyroidism and small intestinal bacterial overgrowth. Indian J Endocrinol Metab 18:307–309

    Article  PubMed  PubMed Central  Google Scholar 

  92. Biondi B, Cappola AR, Cooper DS (2019) Subclinical hypothyroidism: a review. JAMA 322:153–160

    Article  CAS  PubMed  Google Scholar 

  93. Jacobson DL, Gange SJ, Rose NR, Graham NM (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84:223–243

    Article  CAS  PubMed  Google Scholar 

  94. Virili C, Fallahi P, Antonelli A, Benvenga S, Centanni M (2018) Gut microbiota and Hashimoto’s thyroiditis. Rev Endocr Metab Disord 19:293–300

    Article  PubMed  Google Scholar 

  95. Alenghat T, Artis D (2014) Epigenomic regulation of host-microbiota interactions. Trends Immunol 35:518–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  CAS  PubMed  Google Scholar 

  97. Ishaq HM, Mohammad IS, Guo H, Shahzad M, Hou YJ, Ma C, Naseem Z, Wu X, Shi P, Xu J (2017) Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis patients. Biomed Pharmacother 95:865–874

    Article  CAS  PubMed  Google Scholar 

  98. Lauritano EC, Bilotta AL, Gabrielli M, Scarpellini E, Lupascu A, Laginestra A, Novi M, Sottili S, Serricchio M, Cammarota G, Gasbarrini G, Pontecorvi A, Gasbarrini A (2007) Association between hypothyroidism and small intestinal bacterial overgrowth. J Clin Endocrinol Metab 92:4180–4184

    Article  CAS  PubMed  Google Scholar 

  99. Zhou L, Li X, Ahmed A, Wu D, Liu L, Qiu J, Yan Y, ** M, **n Y (2014) Gut microbe analysis between hyperthyroid and healthy individuals. Curr Microbiol 69:675–680

    Article  CAS  PubMed  Google Scholar 

  100. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Investig 121:2094–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Scheja L, Heeren J (2016) Metabolic interplay between white, beige, brown adipocytes and the liver. J Hepatol 64:1176–1186

    Article  CAS  PubMed  Google Scholar 

  102. Teperino R, Amann S, Bayer M, McGee SL, Loipetzberger A, Connor T, Jaeger C, Kammerer B, Winter L, Wiche G, Dalgaard K, Selvaraj M, Gaster M, Lee-Young RS, Febbraio MA, Knauf C, Cani PD, Aberger F, Penninger JM, Pospisilik JA, Esterbauer H (2012) Hedgehog partial agonism drives warburg-like metabolism in muscle and brown fat. Cell 151:414–426

    Google Scholar 

  103. Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, Clement N, Moes S, Colombi M, Meier JA, Swierczynska MM, Jeno P, Beglinger C, Peterli R, Hall MN (2018) Insulin resistance causes inflammation in adipose tissue. J Clin Investig 128:1538–1550

    Article  PubMed  PubMed Central  Google Scholar 

  104. Qatanani M, Szwergold NR, Greaves DR, Ahima RS, Lazar MA (2009) Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J Clin Investig 119:531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sonnenburg JL, Backhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535:56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu Z, Zhu B, Sun Y, Ai C, Wang L, Wen C, Yang J, Song S, Liu X (2018) Sulfated polysaccharide from sea cucumber and its depolymerized derivative prevent obesity in association with modification of gut microbiota in high-fat diet-fed mice. Mol Nutr Food Res 62:e1800446

    Article  PubMed  CAS  Google Scholar 

  107. Zhu A, Chen J, Wu P, Luo M, Zeng Y, Liu Y, Zheng H, Zhang L, Chen Z, Sun Q, Li W, Duan Y, Su D, **ao Z, Duan Z, Zheng S, Bai L, Zhang X, Ju Z, Li Y, Hu R, Pandol SJ, Han YP (2017) Cationic polystyrene resolves nonalcoholic steatohepatitis, obesity, and metabolic disorders by promoting eubiosis of gut microbiota and decreasing endotoxemia. Diabetes 66:2137–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhuang P, Shou Q, Lu Y, Wang G, Qiu J, Wang J, He L, Chen J, Jiao J, Zhang Y (2017) Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochimica et Biophysica Acta 1863(11):2715–2726

    Google Scholar 

  109. Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, Kumar MV, Gewirtz AT (2018) Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23:41–53, e44

    Google Scholar 

  110. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    Article  CAS  PubMed  Google Scholar 

  111. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gao R, Zhu C, Li H, Yin M, Pan C, Huang L, Kong C, Wang X, Zhang Y, Qu S, Qin H (2018) Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity (Silver Spring) 26:351–361

    Article  CAS  Google Scholar 

  113. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, Yu P, Zhao C, Li L, Zhou A, Wang J, Moore JE, Millar BC, Xu J (2010) Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61:69–78

    Article  CAS  PubMed  Google Scholar 

  115. Mai V, McCrary QM, Sinha R, Glei M (2009) Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutr J 8:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  Google Scholar 

  117. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella G, Drew JC, Ilonen J, Knip M, Hyoty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, Triplett EW (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE 6:e25792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lambeth SM, Carson T, Lowe J, Ramaraj T, Leff JW, Luo L, Bell CJ, Shah VO (2015) Composition, diversity and abundance of gut microbiome in prediabetes and type 2 diabetes. J Diabetes Obes 2:1–7

    PubMed  PubMed Central  Google Scholar 

  119. Knip M, Siljander H (2016) The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endoc 12:154–167

    Article  CAS  Google Scholar 

  120. Yamaguchi Y, Adachi K, Sugiyama T, Shimozato A, Ebi M, Ogasawara N, Funaki Y, Goto C, Sasaki M, Kasugai K (2016) Association of intestinal microbiota with metabolic markers and dietary habits in patients with type 2 diabetes. Digestion 94:66–72

    Article  CAS  PubMed  Google Scholar 

  121. Sabatino A, Regolisti G, Cosola C, Gesualdo L, Fiaccadori E (2017) Intestinal microbiota in type 2 diabetes and chronic kidney disease. Curr Diab Rep 17:16

    Article  PubMed  CAS  Google Scholar 

  122. Li G, ** the gut microbiota. Cell Metab 26:672–685, e674

    Google Scholar 

  123. Trent CM, Blaser MJ (2016) Microbially produced acetate: a “Missing Link” in understanding obesity? Cell Metab 24:9–10

    Article  CAS  PubMed  Google Scholar 

  124. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  CAS  PubMed  Google Scholar 

  125. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145:396–406, e391-310

    Google Scholar 

  126. Forbes S, Stafford S, Coope G, Heffron H, Real K, Newman R, Davenport R, Barnes M, Grosse J, Cox H (2015) Selective FFA2 agonism appears to act via intestinal PYY to reduce transit and food intake but does not improve glucose tolerance in mouse models. Diabetes 64:3763–3771

    Article  CAS  PubMed  Google Scholar 

  127. Remely M, Aumueller E, Merold C, Dworzak S, Hippe B, Zanner J, Pointner A, Brath H, Haslberger AG (2014) Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 537:85–92

    Article  CAS  PubMed  Google Scholar 

  128. Iepsen EW, Lundgren J, Dirksen C, Jensen JE, Pedersen O, Hansen T, Madsbad S, Holst JJ, Torekov SS (2015) Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss. Int J Obes 39:834–841

    Article  CAS  Google Scholar 

  129. Christiansen CB, Gabe MBN, Svendsen B, Dragsted LO, Rosenkilde MM, Holst JJ (2018) The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol 315:G53–G65

    Article  CAS  PubMed  Google Scholar 

  130. Chandarana K, Gelegen C, Karra E, Choudhury AI, Drew ME, Fauveau V, Viollet B, Andreelli F, Withers DJ, Batterham RL (2011) Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY. Diabetes 60:810–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bolognini D, Tobin AB, Milligan G, Moss CE (2016) The pharmacology and function of receptors for short-chain fatty acids. Mol Pharmacol 89:388–398

    Article  CAS  PubMed  Google Scholar 

  133. Inoue D, Tsujimoto G, Kimura I (2014) Regulation of energy homeostasis by GPR41. Front Endocrinol (Lausanne) 5:81

    Article  Google Scholar 

  134. Tanoue T, Atarashi K, Honda K (2016) Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 16:295–309

    Article  CAS  PubMed  Google Scholar 

  135. Neurath MF, Finotto S, Glimcher LH (2002) The role of Th1/Th2 polarization in mucosal immunity. Nat Med 8:567–573

    Article  CAS  PubMed  Google Scholar 

  136. Wu W, Liu HP, Chen F, Liu H, Cao AT, Yao S, Sun M, Evans-Marin HL, Zhao Y, Zhao Q, Duck LW, Elson CO, Liu Z, Cong Y (2016) Commensal A4 bacteria inhibit intestinal Th2-cell responses through induction of dendritic cell TGF-beta production. Eur J Immunol 46:1162–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Weaver JR, Nadler JL, Taylor-Fishwick DA (2015) Interleukin-12 (IL-12)/STAT4 axis is an important element for beta-cell dysfunction induced by inflammatory cytokines. PLoS ONE 10:e0142735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wang Z, Shen XH, Feng WM, Ye GF, Qiu W, Li B (2016) Analysis of inflammatory mediators in prediabetes and newly diagnosed type 2 diabetes patients. J Diabetes Res 2016:7965317

    PubMed  PubMed Central  Google Scholar 

  139. Lee IK, Hsieh CJ, Chen RF, Yang ZS, Wang L, Chen CM, Liu CF, Huang CH, Lin CY, Chen YH, Yang KD, Liu JW (2013) Increased production of interleukin-4, interleukin-10, and granulocyte-macrophage colony-stimulating factor by type 2 diabetes’ mononuclear cells infected with dengue virus, but not increased intracellular viral multiplication. Biomed Res Int 2013:965853

    PubMed  PubMed Central  Google Scholar 

  140. Schnupf P, Gaboriau-Routhiau V, Gros M, Friedman R, Moya-Nilges M, Nigro G, Cerf-Bensussan N, Sansonetti PJ (2015) Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 520:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Arif S, Moore F, Marks K, Bouckenooghe T, Dayan CM, Planas R, Vives-Pi M, Powrie J, Tree T, Marchetti P, Huang GC, Gurzov EN, Pujol-Borrell R, Eizirik DL, Peakman M (2011) Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated beta-cell death. Diabetes 60:2112–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA (2003) CD4+CD25+T regulatory cells control anti-islet CD8+T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci USA 100:10878–10883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Joyce SA, Gahan CG (2016) Bile acid modifications at the microbe-host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu Rev Food Sci Technol 7:313–333

    Article  CAS  PubMed  Google Scholar 

  144. Borghede MK, Schlutter JM, Agnholt JS, Christensen LA, Gormsen LC, Dahlerup JF (2011) Bile acid malabsorption investigated by selenium-75-homocholic acid taurine ((75)SeHCAT) scans: causes and treatment responses to cholestyramine in 298 patients with chronic watery diarrhoea. Eur J Intern Med 22:e137–140

    Article  CAS  PubMed  Google Scholar 

  145. Mekjian HS, Phillips SF, Hofmann AF (1971) Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. J Clin Investig 50:1569–1577

    Article  CAS  PubMed  Google Scholar 

  146. Thaysen EH, Pedersen L (1976) Idiopathic bile acid catharsis. Gut 17:965–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259

    Article  CAS  PubMed  Google Scholar 

  148. Li T, Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 66:948–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Schramm C (2018) Bile acids, the microbiome, immunity, and liver tumors. N Engl J Med 379:888–890

    Article  PubMed  Google Scholar 

  150. Chen J, Thomsen M, Vitetta L (2019) Interaction of gut microbiota with dysregulation of bile acids in the pathogenesis of nonalcoholic fatty liver disease and potential therapeutic implications of probiotics. J Cell Biochem 120:2713–2720

    Article  CAS  PubMed  Google Scholar 

  151. Parseus A, Sommer N, Sommer F, Caesar R, Molinaro A, Stahlman M, Greiner TU, Perkins R, Backhed F (2017) Microbiota-induced obesity requires farnesoid X receptor. Gut 66:429–437

    Article  CAS  PubMed  Google Scholar 

  152. Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, Kalavagunta PK, Liao J, ** L, Shang J, Li J (2019) Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  153. Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, Hill C, Gahan CG (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 111:7421–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sun L, **e C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, **a J, Chen B, Zhang S, Yun C, Lian G, Zhang X, Zhang H, Bisson WH, Shi J, Gao X, Ge P, Liu C, Krausz KW, Nichols RG, Cai J, Rimal B, Patterson AD, Wang X, Gonzalez FJ, Jiang C (2018) Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 24:1919–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Guo Z, Zhang J, Wang Z, Ang KY, Huang S, Hou Q, Su X, Qiao J, Zheng Y, Wang L, Koh E, Danliang H, Xu J, Lee YK, Zhang H (2016) Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep 6:20602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yu Y, Liu Q, Li H, Wen C, He Z (2018) Alterations of the gut microbiome associated with the treatment of hyperuricaemia in male rats. Front Microbiol 9:2233

    Article  PubMed  PubMed Central  Google Scholar 

  157. Garcia-Arroyo FE, Gonzaga G, Munoz-Jimenez I, Blas-Marron MG, Silverio O, Tapia E, Soto V, Ranganathan N, Ranganathan P, Vyas U, Irvin A, Ir D, Robertson CE, Frank DN, Johnson RJ, Sanchez-Lozada LG (2018) Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage. PLoS ONE 13:e0202901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Yoo JY, Kim SS (2016) Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients 8:173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Yadav H, Lee JH, Lloyd J, Walter P, Rane SG (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288:25088–25097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, R., Li, Y., Li, C., Zheng, D., Chen, P. (2020). Gut Microbiota and Endocrine Disorder. In: Chen, P. (eds) Gut Microbiota and Pathogenesis of Organ Injury. Advances in Experimental Medicine and Biology, vol 1238. Springer, Singapore. https://doi.org/10.1007/978-981-15-2385-4_9

Download citation

Publish with us

Policies and ethics

Navigation