• 784 Accesses

Abstract

Intracellular and environmental agents are the genotoxic agents that cause toxicity in genome and are the main reason of genomic instability. Genome instability is the primary cause of cancer. In order to encounter the damage caused by endogenous or exogenous agents, there are cell cycle checkpoints that strictly regulate the replication of DNA. They also check and control proper distribution of chromosomes between two sister chromatids during cell division. DNA repair pathways; DNA damage response genes that trigger the repairing pathways, e.g., excision repair pathways (NER, BER, and DNA mismatch repair); and double-strand base repair pathway also correct damages and thus ensure integrity and survival of genome. Microsatellite, chromosomal, and nucleotide instabilities are the main transitions in cancer cells from normal that promote tumor metastasis caused by these toxic agents. Epigenome of individual (specific inherited patterns or changes that modify gene expression without affecting other sequences) plays an important role in maintaining the integrity of DNA, e.g., DNA methylation and histone modification, but the mutations or instability in these patterns can promote tumorigenesis. For diagnosis of large-scale and small-scale tumorigenesis, there are different techniques, e.g., FISH, AP-PCR, ISSR-PCR, and array CGH; they provide us the wide spectrum of therapeutic opportunities for characterizing the individual’s tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Broustas CG, Lieberman HB (2014) DNA damage response genes and the development of cancer metastasis. Radiat Res 181(2):111–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen H, Maxwell C, Connell M (2015) The generation, detection, and prevention of genomic instability during cancer progression and metastasis. In: Genomic instability and cancer metastasis. Springer, Cham, pp 15–38

    Google Scholar 

  3. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halling KC, Harper J, Moskaluk CA, Thibodeau SN, Petroni GR, Yustein AS, Tosi P, Minacci C, Roviello F, Piva P (1999) Origin of microsatellite instability in gastric cancer. Am J Pathol 155(1):205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396(6712):643

    Article  CAS  PubMed  Google Scholar 

  6. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53(4):549–554

    Article  CAS  PubMed  Google Scholar 

  7. Lee HC, Yin PH, Lin JC, Wu CC, Chen CY, Wu CW, Chi CW, Tam TN, Wei YH (2005) Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci 1042(1):109–122

    Article  CAS  PubMed  Google Scholar 

  8. Jefford CE, Irminger-Finger I (2006) Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol 59(1):1–14

    Article  PubMed  Google Scholar 

  9. Gagos S, Irminger-Finger I (2005) Chromosome instability in neoplasia: chaotic roots to continuous growth. Int J Biochem Cell Biol 37(5):1014–1033

    Article  CAS  PubMed  Google Scholar 

  10. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D, Parsons R (1997) Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57(19):4183–4186

    CAS  PubMed  Google Scholar 

  11. Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A (2015) Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 35:S5–S24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Aguilera A, Gómez-González B (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9(3):204

    Article  CAS  PubMed  Google Scholar 

  13. Houtgraaf JH, Versmissen J, van der Giessen WJ (2006) A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7(3):165–172

    Article  PubMed  Google Scholar 

  14. Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73(1):39–85

    Article  CAS  PubMed  Google Scholar 

  15. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9(12):958

    Article  CAS  PubMed  Google Scholar 

  16. Thoms KM, Kuschal C, Emmert S (2007) Lessons learned from DNA repair defective syndromes. Exp Dermatol 16(6):532–544

    Article  CAS  PubMed  Google Scholar 

  17. Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y, Wang Y, Treuting PM, Heddle JA, Goldsby RE, Preston BD (2009) DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci 106(40):17101–17104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Helleday T, Lo J, van Gent DC, Engelward BP (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair 6(7):923–935

    Article  CAS  PubMed  Google Scholar 

  20. Wan T, Ma ES (2012) Molecular cytogenetics: an indispensable tool for cancer diagnosis. Chang Gung Med J 35(2):96–110

    PubMed  Google Scholar 

  21. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11(3):196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King M-C (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250(4988):1684–1689

    Article  CAS  PubMed  Google Scholar 

  23. Miller OJ, Schnedl W, Allen J, Erlanger BF (1974) 5-Methylcytosine localised in mammalian constitutive heterochromatin. Nature 251(5476):636

    Article  CAS  PubMed  Google Scholar 

  24. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36

    Article  CAS  PubMed  Google Scholar 

  25. Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162

    CAS  PubMed  Google Scholar 

  26. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21(35):5400

    Article  CAS  PubMed  Google Scholar 

  27. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  28. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391

    Article  CAS  PubMed  Google Scholar 

  29. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18(7):1073–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen Z (2011) Genomic instability and cancer: an introduction. J Mol Cell Biol 3(1):1–3

    Article  CAS  PubMed  Google Scholar 

  31. Aguilera A, García-Muse T (2013) Causes of genome instability. Annu Rev Genet 47:1–32

    Article  CAS  PubMed  Google Scholar 

  32. Vogelstein B (1990) Cancer. A deadly inheritance [news; comment]. Nature 348:681–682

    Article  CAS  PubMed  Google Scholar 

  33. Kommajosyula N, Rhind N (2006) Cdc2 tyrosine phosphorylation is not required for the S-phase DNA damage checkpoint in fission yeast. Cell Cycle 5(21):2495–2500

    Article  CAS  PubMed  Google Scholar 

  34. Maresca TJ, Salmon E (2010) Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J Cell Sci 123(6):825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22(22):R966–R980

    Article  CAS  PubMed  Google Scholar 

  36. de Medina-Redondo M, Meraldi P (2011) The spindle assembly checkpoint: clock or domino? In: Cell cycle in development. Springer, Berlin, pp 75–91

    Chapter  Google Scholar 

  37. Lens SM, Voest EE, Medema RH (2010) Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10(12):825

    Article  CAS  PubMed  Google Scholar 

  38. Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3(1):51–62

    Article  CAS  PubMed  Google Scholar 

  39. Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14(1):25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jhappan C, Noonan FP, Merlino G (2003) Ultraviolet radiation and cutaneous malignant melanoma. Oncogene 22(20):3099

    Article  CAS  PubMed  Google Scholar 

  41. Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91(14):1194–1210

    Article  CAS  PubMed  Google Scholar 

  42. Orjuela M, Castaneda VP, Ridaura C, Lecona E, Leal C, Abramson DH, Orlow I, Gerald W, Cordon-Cardo C (2000) Presence of human papilloma virus in tumor tissue from children with retinoblastoma: an alternative mechanism for tumor development. Clin Cancer Res 6(10):4010–4016

    CAS  PubMed  Google Scholar 

  43. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci 94(7):3290–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fenech M (2001) The role of folic acid and vitamin B12 in genomic stability of human cells. Mutat Res 475(1–2):57–67

    Article  CAS  PubMed  Google Scholar 

  45. Satia JA, Keku T, Galanko JA, Martin C, Doctolero RT, Tajima A, Sandler RS, Carethers JM (2005) Diet, lifestyle, and genomic instability in the North Carolina Colon Cancer Study. Cancer Epidemiol Biomarkers Prev 14(2):429–436

    Article  CAS  PubMed  Google Scholar 

  46. Mol BM, Massink MP, van der Hout AH, Dommering CJ, Zaman JM, Bosscha MI, Kors WA, Meijers-Heijboer HE, Kaspers GJ, Riele H (2014) High resolution SNP array profiling identifies variability in retinoblastoma genome stability. Genes Chromosom Cancer 53(1):1–14

    Article  CAS  PubMed  Google Scholar 

  47. Mettu RK, Wan Y-W, Habermann JK, Ried T, Guo NL (2010) A 12-gene genomic instability signature predicts clinical outcomes in multiple cancer types. Int J Biol Markers 25(4):219–228

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gull, H., Masood, N. (2020). Genomic Instability and Cancer Metastasis. In: Masood, N., Shakil Malik, S. (eds) 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-1067-0_6

Download citation

Publish with us

Policies and ethics

Navigation