Chitosan-Based Nanocomposites in Food Packaging

  • Chapter
  • First Online:
Bio-based Materials for Food Packaging

Abstract

Since the last decade, there has been a strong drive of reducing packaging waste by replacing plastic food packaging materials with eco-friendly materials from renewable sources. Chitosan is the most abundant biopolymer made up of glucosamine (2-amino-2-deoxy-β-D-glucose) units linked by β-1,4-linkage. Because of its exceptional properties such as effective antimicrobial activity, high biodegradability, and low toxicity, its use has been elevated in food industries. Its shielding wall can delay ripening and prevent water loss as well as increase the shelf life of food products. Its role in foods could be viewed in broad categories based on its functions such as color stabilization, emulsification, antioxidant activity, and dietary fiber-like property aiding water holding and fat entrapment, thereby imparting health benefit. The innovation of nanotechnology in improving the useful properties of chitosan and the development of the chitosan-based materials have been done by merging of nanoparticles, metal oxides, and organic substances like acetic acid, lauric acid, cinnamaldehyde, and propionic acid into chitosan matrix so that it has remarkable applications in food packaging industries. This chapter deals with general information on chitosan and its structure, chitosan nanoparticle preparation by different methods, their characterization and application, chitosan-based bio-nanocomposites, and their role in food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111(2):343–350

    Article  CAS  Google Scholar 

  • Agulló E, Rodríguez MS, Ramos V, Albertengo L (2003) Present and future role of chitin and chitosan in food. Macromol Biosci 3(10):521–530

    Article  Google Scholar 

  • American Chemistry Council (2015) Lifecycle of a plastic product. Available online: http://plastics.americanchemistry.com/Life-Cycle#uses. Accessed 2 Dec 2015

  • Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2014) Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll 41:265–273

    Article  CAS  Google Scholar 

  • Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8

    Article  Google Scholar 

  • Banerjee T, Mitra S, Singh AK, Sharma RK, Maitra A (2002) Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 243:93–105

    Article  CAS  Google Scholar 

  • Barreteau H, Delattre C, Michaud P (2006) Production of oligosaccharides as promising new food additive generation. Food Technol Biotechnol 1:44(3)

    Google Scholar 

  • Bodmeier R, Chen HG, Paeratakul O (1989) A novel approach to the oral delivery of micro- or nanoparticles. Pharm Res 6:413–417

    Article  CAS  Google Scholar 

  • Bowman K, Leong KW (2006) Chitosan nanoparticles for oral drug and gene delivery. Int J Nanomedicine 1:117–128

    Article  CAS  Google Scholar 

  • Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14:1431–1436

    Article  CAS  Google Scholar 

  • Campana-Filho SP, Britto DD, Curti E, Abreu FR, Cardoso MB, Battisti MV, Sim PC, Goy RC, Signini R, Lavall RL (2007) Extraction, structures and properties of alpha-AND beta-chitin. Quím Nova 30(3):644–650

    Article  CAS  Google Scholar 

  • Caner C, Cansiz O (2007) Effectiveness of chitosan-based coating in improving shelf-life of eggs. J Sci Food Agric 87(2):227–232

    Article  CAS  Google Scholar 

  • Casettari L, Castagnino E, Stolnik S, Lewis A, Steven M, Illum HL (2011) Surface characterisation of bioadhesive PLGA/chitosan microparticles produced by supercritical fluid technology. Pharm Res 28:1668–1682

    Article  CAS  Google Scholar 

  • Chen Y, Mohanraj VJ, Parkin JE (2003) Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. Lett Pept Sci 10:621–629

    Article  CAS  Google Scholar 

  • Chen Y, Mohanraj VJ, Wang F, Benson HA (2007) Designing chitosan-dextran sulfate nanoparticles using charge ratios. Am Assoc Pharmaceuticals Sci 8:E98

    Google Scholar 

  • Chenguang L, Yulong T, Chengsheng L, **guang C, Lejun Yu (2007) Preparations, characterizations and applications of chitosan-based nanoparticles. J Ocean Univer China 6:237–243

    Google Scholar 

  • De Moura MR, Avena-Bustillos RJ, McHugh TH, Krochta JM, Mattoso LH (2008) Properties of novel hydroxypropyl methylcellulose films containing chitosan nanoparticles. J Food Sci 73(7)

    Google Scholar 

  • Di Maio L, Scarfato P, Milana MR, Feliciani R, Denaro M, Padula G, Incarnato L (2014) Bionanocomposite polylactic acid/organoclay films: functional properties and measurement of total and lactic acid specific migration. Packag Technol Sci 27(7):535–547

    Article  Google Scholar 

  • Dubin SB, Lunacek JH, Benedek GB (1967) Brownian motion using light scattering. Proc Natl Acad Sci U S A 57:1164

    Article  CAS  Google Scholar 

  • Dutta J, Dutta PK, Rinki K (2008) Current research on chitin and chitosan for tissue engineering applications and future demands on bioproducts. Current research and developments on chitin and chitosan in biomaterials science. Research Signpost, Trivandrum 167–86

    Google Scholar 

  • Erbacher P, Zou S, Bettinger T, Steffan AM, Remy JS (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15:1332–1339

    Article  CAS  Google Scholar 

  • Espinal-Ruiz M, Parada-Alfonso F, Restrepo-Sánchez LP, Narváez-Cuenca CE, McClements DJ (2014) Impact of dietary fibers [methyl cellulose, chitosan, and pectin] on digestion of lipids under simulated gastrointestinal conditions. Food Funct 5(12):3083–3095

    Article  CAS  Google Scholar 

  • Ferreira AR, Alves VD, Coelhoso IM (2016) Polysaccharide-based membranes in food packaging applications. Membranes 6(2):22

    Article  Google Scholar 

  • Fukuda H (1980) Polyelectrolyte complexes of chitosan with sodium carboxymethylcellulose. Bull Chem Soc Jpn 53(4):837–840

    Article  CAS  Google Scholar 

  • Gan Q, Wang T, Cochrane C, McCarron P (2005) Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B: Biointerfaces 44:65–73

    Article  CAS  Google Scholar 

  • Garud N, Garud (2012) A preparation and in-vitro evaluation of metformin microspheres using non-aqueous solvent evaporation technique. Trop J Pharm Res 11:577–583

    Article  CAS  Google Scholar 

  • Gecol H, Ergican E, Miakatsindila P (2005) Biosorbent for tungsten species removal from water: effects of co-occurring inorganic species. J Colloid Interface Sci 292(2):344–353

    Article  CAS  Google Scholar 

  • Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  • Goy RC, Britto DD, Assis OB (2009) A review of the antimicrobial activity of chitosan. Polímeros 19(3):241–247

    Article  CAS  Google Scholar 

  • Jeon SJ, Oh M, Yeo WS, Galvao KN, Jeong KC (2014) Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS One 9(3):92723

    Article  Google Scholar 

  • Kanmani P, Rhim JW (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll 35:644–652

    Article  CAS  Google Scholar 

  • Kataoka K, Matsumoto T, Tokohama M, Okano T, Sakurai Y (2000) Doxorubicin-loaded poly(ethylene glycol)- poly(b-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64:143–153

    Article  CAS  Google Scholar 

  • Kerch G (2015) The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 13(4):2158–2182

    Article  CAS  Google Scholar 

  • Kumar MN (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  CAS  Google Scholar 

  • Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8(5):1567–1636

    Article  CAS  Google Scholar 

  • Kurita K, Ishii S, Tomita K, Nishimura SI, Shimoda K (1974) Reactivity characteristics of squid β-chitin as compared with those of shrimp chitin: high potentials of squid chitin as a starting material for facile chemical modifications. J Polym Sci A Polym Chem 32(6):1027–1032

    Article  Google Scholar 

  • Lee KY, Kim JH, Kwon IC, Jeong SY (2001) Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of adriamycin. Colloid Polym Sci 278:1216–1219

    Article  Google Scholar 

  • Lee JH, Song NB, Jo WS, Song KB (2014) Effects of nano-clay type and content on the physical properties of sesame seed meal protein composite films. Int J Food Sci Technol 49:1869–1875

    Article  CAS  Google Scholar 

  • Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 53:183–193

    Article  CAS  Google Scholar 

  • Liu SH, Chang YH, Chiang MT (2010) Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats. J Agric Food Chem 58(9):5795–5800

    Article  CAS  Google Scholar 

  • López-León T, Carvalho EL, Seijo B, Ortega-Vinuesa JL, Bastos-González D (2005a) Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci 283(2):344–351

    Article  Google Scholar 

  • López-León T, Carvalho EL, Seijo B, Ortega-Vinuesa JL, Bastos-González D (2005b) Physicochemical characterization of chitosan 341 nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci 283:344–351

    Article  Google Scholar 

  • Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5(3):1046–1051

    Article  CAS  Google Scholar 

  • Mhurchu CN, Poppitt SD, McGill AT, Leahy FE, Bennett DA, Lin RB, Ormrod D, Ward L, Strik C, Rodgers A (2004) The effect of the dietary supplement, chitosan, on body weight: a randomised controlled trial in 250 overweight and obese adults. Int J Obes 28(9):1149–1156

    Article  CAS  Google Scholar 

  • Mitra S, Gaur U, Ghosh PC, Maitra AN (2001) Tumor targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74:317–323

    Article  CAS  Google Scholar 

  • Mokhtar SM, Youssef KM, Morsy NE (2010) The effects of natural antioxidants on colour, lipid stability and sensory evaluation of fresh beef patties stored at 4 °C. J Agroaliment Process Technol 20(3):282–292

    Google Scholar 

  • Mura S, Corrias F, Stara G, Piccinini M, Secchi N, Marongiu D, Innocenzi P, Irudayaraj J, Greppi GF (2011) Innovative composite films of chitosan, methylcellulose, and nanoparticles. J Food Sci 76(7)

    Article  CAS  Google Scholar 

  • Muratore G, Nobile D, Buonocore GG, Lanza CM, Asmundo N (2005) The influence of using biodegradable packaging films on the quality decay kinetic of plum tomato (PomodorinoDatterino®). J Food Eng 67(4):393–399

    Article  Google Scholar 

  • Muzzarelli RA (1999) Clinical and biochemical evaluation of chitosan for hypercholesterolemia and overweight control. EXS 87:293–304

    CAS  PubMed  Google Scholar 

  • Nafchi AM, Nassiri R, Sheibani S, Ariffin F, Karim AA (2013) Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr Polym 96(1):233–239

    Article  CAS  Google Scholar 

  • Noishiki Y, Takami H, Nishiyama Y, Wada M, Okada S, Kuga S (2003) Alkali-induced conversion of β-chitin to α-chitin. Biomacromolecules 4(4):896–899

    Article  CAS  Google Scholar 

  • Ohya Y, Shiratani M, Kobayashi H, Ouchi T (1994) Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Pure Appl Chem A 31:629–642

    Google Scholar 

  • Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, Hao JS, Cui FD (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 249:139–147

    Article  CAS  Google Scholar 

  • Pileni MP (2006) Reverse micelles used as templates: a new understanding in nanocrystal growth. J Exp Nanosci 1:13–27

    Article  CAS  Google Scholar 

  • Plackett D (2011) Biopolymers: new materials for sustainable films and coatings. Wiley, Chichester

    Google Scholar 

  • Plastics Europe (n.d.) Packaging. Available online: http://www.plasticseurope.org/use-of-plastics/packaging.aspx. Accessed 2 Dec 2015

  • Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57

    Article  CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  Google Scholar 

  • Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    Article  CAS  Google Scholar 

  • Radhakrishnan Y, Gopal G, Lakshmanan CC, Nandakumar KS (2015) Molecular and genetic medicine

    Google Scholar 

  • Rajalakshmi R, Aruna U, Vinesha V, Rupangada V (2014) Chitosan nanoparticles-An emerging trend in nanotechnology. Int J Drug Deliv 6:204–229

    Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  CAS  Google Scholar 

  • Ray S, Quek SY, Easteal A, Chen XD (2006) The potential use of polymer-clay nanocomposites in food packaging. Int J Food Eng 18:2(4)

    Google Scholar 

  • Reddy JP, Rhim JW (2014) Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydr Polym 110:480–488

    Article  CAS  Google Scholar 

  • Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10):1629–1652

    Article  CAS  Google Scholar 

  • Rodrigues S, da Costa AMR, Grenha A (2012) Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym 89:282–289

    Article  CAS  Google Scholar 

  • Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan – DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387–391

    Article  CAS  Google Scholar 

  • Sannan T, Kurita K, Iwakura Y (1976) Studies on chitin, 2. Effect of deacetylation on solubility. Macromol Chem Phys 177(12):3589–3600

    Article  CAS  Google Scholar 

  • Sanuja S, Agalya A, Umapathy MJ (2014) Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int J Polym Mater Polym Biomater 63(14):733–740

    Article  CAS  Google Scholar 

  • Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D (2006) Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther 12:131–138

    Article  CAS  Google Scholar 

  • Shahidi F, Arachchi JK, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10(2):37–51

    Article  CAS  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95

    Article  CAS  Google Scholar 

  • Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62(2):130–136

    Article  CAS  Google Scholar 

  • Suman SP, Mancini RA, Joseph P, Ramanathan R, Konda MK, Dady G, Yin S (2010) Packaging-specific influence of chitosan on color stability and lipid oxidation in refrigerated ground beef. Meat Sci 86(4):994–998

    Article  CAS  Google Scholar 

  • Tang ZX, Shi LE (2007) Adsorption of neutral proteinase on chitosan nano-particles. Biotechnol Biotechnol Equip 21:223–228

    Article  CAS  Google Scholar 

  • Tang ZX, Qian JQ, ** LE (2007) Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Appl Biochem Biotechnol 136:77–96

    Article  CAS  Google Scholar 

  • Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52(5):426–442

    Article  CAS  Google Scholar 

  • Tangpasuthadol V, Pongchaisirikul N, Hoven VP (2003) Surface modification of chitosan films: effects of hydrophobicity on protein adsorption. Carbohydr Res 338(9):937–942

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2016) Handbook of sustainable polymers: processing and applications. CRC Press

    Google Scholar 

  • Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51–66

    Google Scholar 

  • Tiyaboonchai W, Limpeanchob N (2007) Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. Int J Pharm 329:142–149

    Article  CAS  Google Scholar 

  • Tokumitsu H, Ichikawa H, Fukumori Y (1999) Chitosan gadopentetic acid complex nanoparticles for gadolinium neutron capture therapy of cancer: preparation by novel emulsion droplet coalescence technique and characterization. Pharm Res 16:1830–1835

    Article  CAS  Google Scholar 

  • Tolaimate A, Desbrieres J, Rhazi M, Alagui A (2003) Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44(26):7939–7952

    Article  CAS  Google Scholar 

  • Trovatti E, Fernandes SC, Rubatat L, Freire CS, Silvestre AJ, Neto CP (2012) Sustainable nanocomposite films based on bacterial cellulose and pullulan. Cellulose 19(3):729–737

    Article  CAS  Google Scholar 

  • Tsai ML, Bai SW, Chen RH (2008) Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohydr Polym 71:448–457

    Article  CAS  Google Scholar 

  • Tumwesigye KS, Oliveira JC, Sousa-Gallagher MJ (2016) New sustainable approach to reduce cassava borne environmental waste and develop biodegradable materials for food packaging applications. Food Packag Shelf Life 7:8–19

    Article  Google Scholar 

  • Uchegbu IF, Schatzlein AG, Tetley L, Gray AI, Sludden J (1998) Polymeric chitosan-based vesicles for drug de livery. J Pharm Pharmacol 50:453–458

    Article  CAS  Google Scholar 

  • Upadhyaya L, Singh J, Agarwal V, Tewari RP (2014) The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release 186:54–87

    Article  CAS  Google Scholar 

  • Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207

    Article  Google Scholar 

  • Vargas M, Gonzalez-Martinez C (eds) (2010) Recent patents on food applications of chitosan. Recent Pat Food Nutr Agric 2(2):121–128

    Google Scholar 

  • Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74(4):840–844

    Article  CAS  Google Scholar 

  • Yokohama M, Fukushima S, Uehara R, Okamoto K, Kataoka K (1998) Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelle and their design for in vivo delivery to a solid tumor. J Control Release 50:79–92

    Article  Google Scholar 

  • Zhang J, **a W, Liu P, Cheng Q, Tahi T, Gu W, Li B (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 8(7):1962–1987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hooda, R., Batra, B., Kalra, V., Rana, J.S., Sharma, M. (2018). Chitosan-Based Nanocomposites in Food Packaging. In: Ahmed, S. (eds) Bio-based Materials for Food Packaging. Springer, Singapore. https://doi.org/10.1007/978-981-13-1909-9_12

Download citation

Publish with us

Policies and ethics

Navigation