Historical Introduction

  • Chapter
  • First Online:
Advances in Lead-Free Piezoelectric Materials
  • 1929 Accesses

Abstract

Piezoelectric materials are currently used in many electronic devices because of excellent properties. Here, we briefly introduce the historical evolution of piezoelectric effect and also emphasize the importance of some factors (e.g., phase transition, microstructure, poling behavior) on the piezoelectricity of a material. Due to the toxicity of Pb in lead-based piezoelectrics, lots of attention has been given to lead-free piezoelectric materials, especially the use of phase boundaries. Importantly, we summarize the development of lead-free piezoelectrics, and some great advances have been demonstrated. We believe that the advances in lead-free piezoelectric materials will promote the practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holler FJS, Douglas A, Crouch, Stanley R (2007) Principles of instrumental analysis, 6th edn. Cengage Learning, p 9. ISBN 978-0-495-01201-6

    Google Scholar 

  2. Gautschi G (2002) Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers. Sens Rev 22(4):363–364

    Article  Google Scholar 

  3. http://www.murata.com/corporate/history/index.html

  4. Budimir M, Damjanovic D, Setter N (2003) Piezoelectric anisotropy-phase transition relations in perovskite single crystals. J Appl Phys 94(10):6753–6761

    Article  CAS  Google Scholar 

  5. Davis M, Budimir M, Damjanovic D (2014) Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J Appl Phys 101(5):054112

    Article  CAS  Google Scholar 

  6. Heitmann AA, Rossetti GA (2004) Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries. J Am Ceram Soc 97(6):1661–1685

    Article  CAS  Google Scholar 

  7. Haun MJ, Furman E, Zhuang ZQ (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system. Ferroelectric 94(1):313

    Article  Google Scholar 

  8. Shirane G, Takeda A (1952) Phase Transitions in Solid Solutions of PbZrO3 and PbTiO3 (I) Small Concentrations of PbTiO3. J Phys Soc Jpn 7(1):5–11

    Article  CAS  Google Scholar 

  9. Sawaguchi E (1953) Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J Phys Soc Jpn 8(5):615–629

    Article  CAS  Google Scholar 

  10. Jaffe B, Roth RS, Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25(6):809–810

    Article  CAS  Google Scholar 

  11. Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  12. Berlincourt D (1971) Piezoelectric crystals and ceramics. In: Ultrasonic transducer materials. Springer, Berlin, pp 63–124

    Google Scholar 

  13. Noheda B, Cox DE, Shirane G (2000) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys Rev B 63(1):014103

    Article  CAS  Google Scholar 

  14. Cox DE, Noheda B, Shirane G (2001) Universal phase diagram for high-piezoelectric perovskite systems. Appl Phys Lett 79(3):400–402

    Article  CAS  Google Scholar 

  15. Noheda B, Cox DE, Shirane G (1999) A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3Pb (Zr1-xTix) O3 solid solution. Appl Phys Lett 74(14):2059–2061

    Article  CAS  Google Scholar 

  16. Zhang N, Yokota H, Glazer A-M (2014) The missing boundary in the phase diagram of PbZr1−xTixO3. Nat Commun 5:5231

    Article  CAS  Google Scholar 

  17. Guo R, Cross LE, Park SE (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84(23):5423

    Article  CAS  Google Scholar 

  18. Yokota H, Zhang N, Taylor A-E (2009) Crystal structure of the rhombohedral phase of PbZr1-xTixO3 ceramics at room temperature. Phys Rev B 80(10):754–758

    Article  CAS  Google Scholar 

  19. Li MJ, Xu LP, Shi K (2016) Interband electronic transitions and phase diagram of PbZr1-xTixO3 (0.05 ≤ x ≤ 0.70) ceramics: ellipsometric experiment and first-principles theory. J Phys D: Appl Phys 49(27):275305

    Article  CAS  Google Scholar 

  20. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811

    Article  CAS  Google Scholar 

  21. Kuwata J, Uchino K, Nomura S (1981) Phase transitions in the Pb(Zn1/3Nb2/3)O3-PbTiO3 system. Ferroelectric 37(1):579–582

    Article  CAS  Google Scholar 

  22. Kuwata J, Uchino K, Nomura S (2014) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals. Jpn J Appl Phys 21(21):1298–1302

    Google Scholar 

  23. Choi SW, Shrout TR, Jang SJ (1989) Morphotropic phase boundary in Pb(MgNb)O3-PbTiO3 system. Mater Lett 8:253–255

    Article  CAS  Google Scholar 

  24. Singh AK, Pandey D (2001) Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3. J Phys: Conden Matter 13(48):931–936

    Google Scholar 

  25. Noheda B, Cox DE, Shirane G (2002) Phase diagram of the ferroelectric relaxor (1-x) PbMg1/3Nb2/3O3-xPbTiO3. Phys Rev B 66(5):340–351

    Article  CAS  Google Scholar 

  26. Ye ZG, Dong M (2000) Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals. J Appl Phys 87(5):2312–2319

    Article  CAS  Google Scholar 

  27. Guo Y, Luo H, Ling D (2003) The phase transition sequence and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 single crystal. J Phys: Conden Matter 15(2):L77–L82 (6)

    CAS  Google Scholar 

  28. Eitel RE, Randall CA, Shrout TR (2014) Preparation and characterization of high temperature perovskite ferroelectrics, in the solid-solution (1-x)BiScO3xPbTiO3. Jpn J Appl Phys 41(4A):2099–2104

    Google Scholar 

  29. Han P, Tian J, Yan W (2008) Bridgman growth and properties of PMN–PT-based single crystals. In: Handbook of advanced dielectric, piezoelectric and ferroelectric materials. Woodhead Publishing Limited, Cambridge, UK

    Google Scholar 

  30. La-Orauttapong D, Noheda B, Ye ZG (2002) Phase diagram of the relaxor ferroelectric (1-x) Pb(Zn1/3Nb2/3)O31-xPbTiO3. Phys Rev B 67(13):99–107

    Google Scholar 

  31. Noheda B, Cox DE, Shirane G (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Phys Rev Lett 86(17):3891–3894

    Article  CAS  Google Scholar 

  32. Dwight V (2000) Symmetry-adaptive ferroelectric mesostates in oriented Pb(Bi1/3Bi2/3)O3–PbTiO3 crystals. J Appl Phys 88(8):4794–4806

    Article  Google Scholar 

  33. Ohwada K, Hirota K, Rehrig PW (2001) Neutron diffraction study of the irreversible R-MA-MC phase transition in single crystal Pb[(Zn1/3Nb2/3)1-xTix]O3. J Phys Soc Jpn 70(9):2778–2783

    Article  CAS  Google Scholar 

  34. Bellaiche L, GarcÍ A, Vanderbilt D (2001) Electric-field induced polarization paths in Pb (Zr1-xTix) O3 alloys. Phys Rev B 64(6):060103

    Article  CAS  Google Scholar 

  35. Liu Z, Zhao CL, Li JF, Wang K, Wu JG (2018) Large strain and temperature-insensitive piezoelectric effect in high-temperature piezoelectric ceramics. J Mater Chem C 6:456–463

    Article  CAS  Google Scholar 

  36. Eitel RE, Randall CA, Shrout TR (2001) New high temperature morphotropic phase boundary piezoelectrics, based on Bi(Me)O3-PbTiO3 ceramics. Jpn J Appl Phys 40(10):5999

    Article  CAS  Google Scholar 

  37. Eitel RE, Zhang SJ, Shrout TR (2004) Phase diagram of the perovskite system (1-x)BiScO3-xPbTiO3. J Appl Phys 96(5):2828–2831

    Article  CAS  Google Scholar 

  38. Zhang S, Eitel RE, Randall CA, Shrout TR, Alberta EF (2005) Manganese-modified BiScO3-PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl Phys Lett 86(26):262904

    Article  CAS  Google Scholar 

  39. Salomon E-W-A-N, Trans (1946) Electrochem. Soc

    Google Scholar 

  40. Liu W, Ren X (2009) Large piezoelectric effect in Pb-Free ceramics. Phys Rev Lett 103(25):257602

    Article  CAS  Google Scholar 

  41. Keeble DS, Benabdallah F, Thomas PA (2013) Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl Phys Lett 102(9):092903

    Article  CAS  Google Scholar 

  42. Wu JG, Fan Z, **ao D (2016) Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog Mater Sci 84:335–402

    Article  CAS  Google Scholar 

  43. Zeches RJ, Rossell MD, Zhang JX (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326(5955):977–980

    Article  CAS  Google Scholar 

  44. Lee MH, Kim DJ, Park JS (2015) High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 27(43):6976–6982

    Article  CAS  Google Scholar 

  45. Wu JG, **ao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115(7):2559–2595

    Article  CAS  Google Scholar 

  46. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87

    Article  CAS  Google Scholar 

  47. Wang K, Yao FZ, Jo W (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23(33):4079–4086

    Article  CAS  Google Scholar 

  48. Zheng T, Wu H, Yuan Y, Wu JG (2017) Structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energ Environ Sci 10:528–537

    Article  CAS  Google Scholar 

  49. Xu K, Li J, Lv X, Wu JG (2016) Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 28(38):8519–8523

    Article  CAS  Google Scholar 

  50. Wang X, Wu J, **ao D (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136(7):2905–2910

    Article  CAS  Google Scholar 

  51. Wang R, Wang K, Yao F (2015) Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J Am Ceram Soc 98(7):2177–2182

    Article  CAS  Google Scholar 

  52. Takenaka T, Maruyama KI, Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9B):2236–2239

    Article  CAS  Google Scholar 

  53. Ma C, Tan X (2010) Phase diagram of unpoled lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. Solid State Commun 150(s33–34):1497–1500

    Article  CAS  Google Scholar 

  54. Ma C, Guo H, Beckman S-P (2012) Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3, Piezoelectrics. Phys Rev Lett 109(10):107602

    Article  CAS  Google Scholar 

  55. Ma C, Guo H, Tan X (2013) A new phase boundary in (Bi1/2Na1/2)TiO3-BaTiO3 revealed via a novel method of electron diffraction analysis. Adv Funct Mater 23(42):5261–5266

    Article  CAS  Google Scholar 

  56. Jo W, Rodel J (2011) Electric-field-induced volume change and room temperature phase stability of (Bi1/2Na1/2)TiO3-xmol%BaTiO3 piezoceramics. Appl Phys Lett 99(4):042901

    Article  CAS  Google Scholar 

  57. Zhang ST, Kounga AB, Aulbach E (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 91(11):112906

    Article  CAS  Google Scholar 

  58. Liu X, Tan X (2015) Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv Mater 28(3):574–578

    Article  CAS  Google Scholar 

  59. Martirena HT, Burfoot JC (1974) Grain-size effects on properties of some ferroelectric ceramics. J Phys C: Solid State Phys 7(17):3182

    Article  CAS  Google Scholar 

  60. Zhang HL, Li JF, Zhang BP (2007) Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents. Acta Mater 55(1):171–181

    Article  CAS  Google Scholar 

  61. Devries RC, Burke JE (1957) Microstructure of barium titanate ceramics. J Am Ceram Soc 40(6):200–206

    Article  CAS  Google Scholar 

  62. Lin DM, **ao DQ, Zhu JG (2010) The relations of sintering conditions and microstructures of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 piezoelectric ceramics. Cryst Res Technol 39(1):30–33

    Article  CAS  Google Scholar 

  63. Jaeger RE, Egerton L (2010) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45(5):209–213

    Article  Google Scholar 

  64. Li JF, Wang K, Zhang BP (2006) Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(2):706–709

    Article  CAS  Google Scholar 

  65. Kosec M, Kolar D (1975) On activated sintering and electrical properties of NaKNbO3. Mater Res Bull 10(5):335–339

    Article  CAS  Google Scholar 

  66. Lv J, Wu J, Wu W (2015) Enhanced electrical properties of quenched (1–x)Bi1–ySmyFeO3-xBiScO3 lead-free ceramics. J Phys Chem C 119(36):21105–21115

    Article  CAS  Google Scholar 

  67. Choi JJ, Ryu J, Kim HE (2001) Microstructural evolution of transparent PLZT ceramics sintered in air and oxygen atmospheres. J Amer Chem Soc 84:1465–1469

    CAS  Google Scholar 

  68. Palei P, Pattanaik M, Kumar P (2012) Effect of oxygen sintering on the structural and electrical properties of KNN ceramics. Ceram Int 38:851–854

    Article  CAS  Google Scholar 

  69. Pan D, Guo Y, Zhang K, Duan H, Chen Y, Li H, Liu H (2017) Phase structure, microstructure, and piezoelectric properties of potassium-sodium niobate-based lead-free ceramics modified by Ca. J Alloys Compd 693:950–954

    Article  CAS  Google Scholar 

  70. Zhang Y, Li L, Bai W, Zhai J (2016) Microstructure and piezoelectric properties of lead-free (KNa)NbO-LiNbO-SrTiOCeramics. Ferroelectric 490:78–84

    Article  CAS  Google Scholar 

  71. Cernea M, Andronescu E, Radu R, Fochi F, Galassi C (2010) Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J Alloys Compd 490:690–694

    Article  CAS  Google Scholar 

  72. West DL, Payne DA (2010) Preparation of 0.95Bi1/2Na1/2TiO3·0.05BaTiO3 ceramics by an aqueous citrate-gel route. J Am Ceram Soc 86:192–194

    Article  Google Scholar 

  73. Tao H, Wu J (2017) New poling method for piezoelectric ceramics. J Mater Chem C 5:1601–1606

    Article  CAS  Google Scholar 

  74. Bellaiche L, Garcia A, Vanderbilt D (2000) Finite-temperature properties of Pb(Zr1-xTi(x))O3 alloys from first principles. Phys Rev Lett 84:5427

    Article  CAS  Google Scholar 

  75. Ji W, Tan CKI, Yao K, Al-Mamun A, Bhatia CS, Wong TI (2015) Structural evolution and properties of 0.3Pb(In1/2Nb1/2)O3-0.38Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 ferroelectric ceramics with different sintering times. J Am Ceram Soc 97:3294–3300

    Article  CAS  Google Scholar 

  76. Shen ZY, Zhen Y, Wang K, Li JF (2009) Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-Modified (Na, K)NbO3 ceramics. J Am Ceram Soc 92:1748–1752

    Article  CAS  Google Scholar 

  77. Guo FQ, Zhang BH, Fan ZX, Peng X, Yang Q, Dong YX, Chen RR (2016) Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J Mater Sci-Mater Electron 27:5967–5971

    Article  CAS  Google Scholar 

  78. Rahman JU, Hussain A, Maqboo A, Ryu GH, Song TK, Kim WJ, Kim MH (2014) Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3-BaTiO3 ceramics. J Alloys Compd 593:97–102

    Article  CAS  Google Scholar 

  79. Wang XP, Zheng T, Wu JG, **ao DQ, Zhu JG, Wang H, Wang XJ, Lou XJ, Gu YL (2015) Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K, Na)NbO3-based ceramics with different additives. J Mater Chem A 3:15951–15961

    Google Scholar 

  80. Zhao C, Wang H, **ong J, Wu J (2016) Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1-xMx)O3 (M=Sn, Hf, Zr) lead-free ceramics. Dalton Tran 45:6466–6480

    Article  CAS  Google Scholar 

  81. **e C, Fang QH, Liu YW, Chen JK (2013) Dislocation simulation of domain switching toughening in ferroelectric ceramics. Int J Solids Struct 50:1325–1331

    Article  CAS  Google Scholar 

  82. Hippel AV (1950) Ferroelectricity, domain structure, and phase transitions of barium titanate. Rev Mod Phys 22:221–237

    Article  Google Scholar 

  83. Zou T, Wang X, Wang H, Zhong C, Li L, Chen I (2008) Bulk dense fine-grain (1-x)BiScO3-xPbTiO3 ceramics with high piezoelectric coefficient. Appl Phys Lett 93:192913

    Article  CAS  Google Scholar 

  84. Wang H, Zhu J, Lu N, Bokov AA, Ye ZG, Zhang XW (2006) Hierarchical micro-/nanoscale domain structure in Mc phase of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystal. Appl Phy Lett 89:042908

    Article  CAS  Google Scholar 

  85. Yao FZ, Yu Q, Wang K, Li Q, Li JF (2014) Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. RSC Adv 4: 20062–20068

    Google Scholar 

  86. Park SE, Wada S, Cross LE, Shrout TR (1999) Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. J Appl Phys 86:2746–2750

    Article  CAS  Google Scholar 

  87. Tai CW, Hong CS, Chan HLW (2010) Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3 ceramics at different temperatures. J Am Ceram Soc 91:3335–3341

    Article  CAS  Google Scholar 

  88. Alikin D, Turygin A, Kholkin A, Shur V (2017) Ferroelectric domain structure and local piezoelectric properties of lead-free (Ka0.5Na0.5)NbO3 and BiFeO3-based piezoelectric ceramics. Materials 10:47

    Article  CAS  Google Scholar 

  89. Wada S, Yako K, Yokoo K, Hakemoto H, Tsurumi T (2006) Domain wall engineering in barium titanate single crystals for enhanced piezoelectric properties. Ferroelectric 334:17–27

    Google Scholar 

  90. Yu H, Wang X, Fang J, Li L (2013) Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering. J Am Ceram Soc 96:3369–3371

    Article  CAS  Google Scholar 

  91. Ma C, Tan X, Dul’Kin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 108:104105

    Article  CAS  Google Scholar 

  92. Schönau KA, Schmitt LA, Knapp M, Fuess H, Eichel RA, Kungl H, Hoffmann MJ (2007) Nanodomain structure of Pb [Zr1−xTix]O3 at its morphotropic phase boundary: investigations from local to average structure. Phys Rev B 75:184117

    Article  CAS  Google Scholar 

  93. Gao J, Xue D, Wang Y, Wang D, Zhang L, Wu H, Guo S, Bao H, Zhou C, Liu W (2011) Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl Phys Lett 99:092901

    Article  CAS  Google Scholar 

  94. Zhang L, Sun Q, Ma W, Zhang Y, Liu H (2012) The effect of poling condition on the piezoelectric properties of 0.3PNN-0.7PZT ceramics in the vicinity of MPB. J Mater Sci-Mater Electron 23:688–691

    Article  CAS  Google Scholar 

  95. Kumar A, Prasad VVB, Raju KCJ, James AR (2015) Optimization of poling parameters of mechanically processed PLZT 8/60/40 ceramics based on dielectric and piezoelectric studies. Eur Phys J B 88:1–9

    Google Scholar 

  96. Kumar A, Prasad VVB, Raju KCJ, James AR (2015) Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 ceramics. J Mater Sci Mater Electron 26:3757–3765

    Article  CAS  Google Scholar 

  97. Guo H, Ma C, Liu X, Tan X (2013) Electrical poling below coercive field for large piezoelectricity. Appl Phys Lett 102:092902

    Article  CAS  Google Scholar 

  98. Zheng T, Wu JG (2016) Relationship between poling characteristics and phase boundaries of potassium-sodium niobate ceramics. ACS Appl Mater Interfaces 8:9242–9246

    Article  CAS  Google Scholar 

  99. Li J, Li F, Zhang S (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97:1–27

    Article  CAS  Google Scholar 

  100. Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco JF, Fusil S (2007) Room temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys Rev B 76:024116

    Article  CAS  Google Scholar 

  101. Ursic H, Rojac T, Bencan A, Malic B, Damjanovic D (2015) Mobile domain walls as a bridge between nanoscale conductivity and macroscopic electromechanical response. Adv Funct Mater 25:2099–2108

    Article  CAS  Google Scholar 

  102. Zheng T, Wu JG (2015) Enhanced piezoelectric activity in high-temperature Bi1-x-ySmxLayFeO3 lead-free ceramics. J Mater Chem C 3:3684–3693

    Article  CAS  Google Scholar 

  103. Lv J, Lou X, Wu J (2016) Defect dipole-induced poling characteristics and ferroelectricity of quenched bismuth ferrite-based ceramics. J Mater Chem C 4(25):6140–6151

    Article  CAS  Google Scholar 

  104. Yuan GL, Or SW (2006) Multiferroicity in polarized single-phase Bi0.875Sm0.125FeO3 ceramics. J Appl Phys 100:024109

    Article  CAS  Google Scholar 

  105. Yuan GL, Or SW, Wang YP, Liu ZG, Liu JM (2006) Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun 138:76–81

    Article  CAS  Google Scholar 

  106. Rojac T, Kosec M, Budic B, Setter N, Damjanovic D (2010) Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys 108:1315–1465

    Article  CAS  Google Scholar 

  107. Shi XX, Liu XQ, Chen XM (2016) Structure evolution and piezoelectric properties across the morphotropic phase boundary of Sm-substituted BiFeO3 ceramics. J Appl Phys 119:064104

    Article  CAS  Google Scholar 

  108. Zheng T, Wu JG (2016) Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J Alloys Compd 676:505–512

    Article  CAS  Google Scholar 

  109. Li B, Blendell JE, Bowman KJ (2011) Temperature-dependent poling behavior of lead-free BZT-BCT piezoelectrics. J Am Ceram Soc 94:3192–3194

    Article  CAS  Google Scholar 

  110. Wu JG, **ao D, Wu W, Chen Q, Zhu J, Yang Z, Wang J (2012) Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1−xZrx)O3 lead-free piezoelectric ceramics. J Eur Ceram Soc 32:891–898

    Article  CAS  Google Scholar 

  111. Praveen JP, Karthik T, James AR, Chandrakala E, Asthana S, Das D (2015) Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics. J Eur Ceram Soc 35:1785–1798

    Article  CAS  Google Scholar 

  112. Li B, Ehmke MC, Blendell JE, Bowman KJ (2013) Optimizing electrical poling for tetragonal, lead-free BZT–BCT piezoceramic alloys. J Eur Ceram Soc 33:3037–3044

    Article  CAS  Google Scholar 

  113. Zhang B, Wu J, Wu B, **ao D, Zhu J (2012) Effects of sintering temperature and poling conditions on the electrical properties of Bi0.50(Na0.70K0.20Li0.10)0.50TiO3 piezoelectric ceramics. J Alloys Compd 525:53–57

    Article  CAS  Google Scholar 

  114. Du H, Zhou W, Luo F, Zhu D, Qu S, Pei Z (2007) An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl Phys Lett 91:202907

    Article  CAS  Google Scholar 

  115. Wang K, Li JF (2010) Domain engineering of lead-free Li-modified (K, Na)NbO3 olycrystals with highly enhanced piezoelectricity. Adv Funct Mater 20:1924–1929

    Article  CAS  Google Scholar 

  116. Wu J, Wang Y, Wang H (2014) Phase boundary, poling conditions, and piezoelectric activity and their relationships in (K0.42Na0.58)(Nb0.96Sb0.04)O3–(Bi0.5K0.5)0.90Zn0.10ZrO3 lead-free ceramics. RSC Adv 4:64835–64842

    Article  CAS  Google Scholar 

  117. Tao H, Wu WJ, Wu JG (2016) Electrical properties of holmium doped (K,Na)(Nb,Sb)O3-(Bi,Na)HfO3 ceramics with wide sintering and poling temperature range. J Alloy Compd 689:759–766

    Google Scholar 

  118. Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X (2018) Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Adv Mater 30:1705171

    Article  CAS  Google Scholar 

  119. Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW (2004) Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429:392–395

    Article  CAS  Google Scholar 

  120. Royen P, Swars K (2010) Das system wismutoxyd-eisenoxyd im bereich von 0 bis 55 Mol% eisenoxyd. Angew Chem 69:779

    Article  Google Scholar 

  121. Wang J, Neaton JB, Zheng Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  CAS  Google Scholar 

  122. Yan J, Gomi M, Yokota T, Song H (2013) Phase transition and huge ferroelectric polarization observed in BiFe1−xGaxO3 thin films. Appl Phys Lett 102:024113

    Google Scholar 

  123. Fan Z, **ao J, Liu H, Yang P, Ke Q, Ji W, Yao K, Ong KP, Zeng K, Wang J (2015) Stable ferroelectric perovskite structure with giant axial ratio and polarization in epitaxial BiFe0.6Ga0.4O3 thin films. ACS Appl Mater Interfaces 7:2648–2653

    Article  CAS  Google Scholar 

  124. Gao F, Chen XY, Yin KB, Dong S, Ren ZF, Yuan F, Yu T, Zou ZG, Liu JM (2010) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Cheminform 38

    Google Scholar 

  125. Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324:63–66

    Article  CAS  Google Scholar 

  126. Seidel J, Fu D, Yang SY, Alarcón-Lladó E, Wu J, Ramesh R, Ager JW III (2011) Efficient photovoltaic current generation at ferroelectric domain walls. Phys Rev Lett 107:126805

    Article  CAS  Google Scholar 

  127. Tian G, Zhang F, Yao J, Fan H, Li P, Li Z, Song X, Zhang X, Qin M, Zeng M (2016) Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array. ACS Nano 10:1025–1032

    Article  CAS  Google Scholar 

  128. Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) New ferroelectrics of complex composition. Sov Phys Solid State 1:150–151

    Google Scholar 

  129. Lin D, **ao D, Zhu J, Yu P (2006) Piezoelectric and ferroelectric properties of [Bi0.5(Na1−xyKxLiy) 0.5]TiO3 lead-free piezoelectric ceramics. Appl Phys Lett 88:062901

    Article  CAS  Google Scholar 

  130. Zhang S, Kounga AB, Aulbach E, Ehrenberg H (2007) Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl Phys Lett 91:112906

    Article  CAS  Google Scholar 

  131. Zhang J, Pan Z, Guo FF, Liu WC, Ning H, Chen YB, Lu MH, Yang B, Chen J, Zhang ST (2015) Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat Commun 6:6615

    Article  CAS  Google Scholar 

  132. Bechmann R (1956) Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. J Acoust Soc Am 28:347–350

    Article  Google Scholar 

  133. Wada S, Takeda K, Tsurumi T, Kimura T (2014) Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn J Appl Phys 46:7039–7043

    Article  CAS  Google Scholar 

  134. Aurivillius B (1949) Mixed bismuth oxides with layer lattices I. The structure type of CaNb2Bi2O9. Arkiv kemi 1:463–480

    CAS  Google Scholar 

  135. Aurivillius B (1949) Mixed bismuth oxides with layer lattices II. Structure of Bi4Ti3O12. Arkiv kemi 1:499–512

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J. (2018). Historical Introduction. In: Advances in Lead-Free Piezoelectric Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-8998-5_1

Download citation

Publish with us

Policies and ethics

Navigation