Production Scheduling Tools to Prevent and Repair Disruptions in MRCPSP

  • Conference paper
  • First Online:
Transactions on Engineering Technologies (IMECS 2017)

Abstract

Companies invest countless hours in planning project execution because it is a crucial component for their growth. However, regardless of all the considerations taken in the planning stage, uncertainty inherent to project execution leads to schedule disruptions, and even renders projects unfeasible. There is a vast amount of studies for generating baseline (predictive) schedules, yet, the literature regarding reactive scheduling for the Multi-Mode Resource Constrained Project Scheduling Problem (MRCPSP) is scant with only two previous studies found at the time of writing. In contrast, schedule disruption management has been thoroughly studied in the mass production environment, and regardless of the difficulties encountered, they will almost certainly be required to meet the levels planned. With this in mind, this study proposes an integrative (proactive and reactive) scheduling framework that uses the experience and methodologies developed in the production scheduling environment and apply it to the MRCPSP. The purpose of this framework is to be used on further empirical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 207.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 207.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Aytug, M.A. Lawley, K. McKay, S. Mohan, R. Uzsoy, Executing production schedules in the face of uncertainties: a review and some future directions. Eur. J. Operation. Res. 161(1), 86–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. S.D. Wu, R.H. Storer, P.C. Chang, One machine rescheduling heuristics with efficiency and stability as criteria. Comput. Operation. Res. 20, 1–14 (1993)

    Article  MATH  Google Scholar 

  3. W. Herroelen, R. Leus, Project scheduling under uncertainty-survey and research potentials. Eur. J. Operation. Res. 165(2), 289–306 (2005)

    Article  MATH  Google Scholar 

  4. J.R. Turner, R. Müller, On the nature of the project as a temporary organization. Int. J. Project Manag. 21:1–8 (2003)

    Google Scholar 

  5. A.H.L. Chen, Y.C. Liang, J.D. Padilla, An experimental reactive scheduling framework for the multi-mode resource constrained project scheduling problem, in Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists 2017, pp. 853–858, Hong Kong, 15–17 March 2017

    Google Scholar 

  6. L. Ju, Z. Tan, J. Yuan, Q. Tan, H. Li, F. Dong, A bi-level stochastic scheduling optimization model for a virtual power plant connected to a windphotovoltaicenergy storage system considering the uncertainty and demand response. Appl. Energy 171, 184–199 (2016)

    Article  Google Scholar 

  7. H. Wu, M. Shahidehpour, Z. Li, W. Tian, Chance-constrained day-ahead scheduling in stochastic power system operation. IEEE Trans. Power Syst. 29(4), 1583–1591 (2014)

    Article  Google Scholar 

  8. K. Liu, E. Fridman, K.H. Johansson, Networked control with stochastic scheduling. IEEE Trans. Autom. Control 60(11), 3071–3076 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. T. James, Control of multiclass queueing systems with abandonments and adversarial customers (Lancaster University, Thesis, 2016)

    Google Scholar 

  10. D.E. Shobrys, D.C. White, Planning, scheduling and control systems: why can they not work together? Comput. Chem. Eng. 24, 163–173 (2000)

    Article  Google Scholar 

  11. G. Sand, S. Engell, A. Mrkert, R. Schultz, and C. Schulz. Approximation of an ideal online scheduler for a multiproduct batch plant. Comput. Chem. Eng. 24, 361–367 (2000)

    Article  Google Scholar 

  12. R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes, J. Llanos, D. Saz, A microgrid energy management system based on the rolling horizon strategy. IEEE Trans. Smart Grid 4(2), 996–1006 (2013)

    Article  Google Scholar 

  13. P.C. Lin, R. Uzsoy, Chance-constrained formulations in rolling horizon production planning: an experimental study. Int. J. Product. Res. 54(13), 3927–3942 (2016)

    Article  Google Scholar 

  14. H. Meyr, M. Mann, A decomposition approach for the general lotsizing and scheduling problem for parallel production lines. Eur. J. Operation. Res. 229(3), 718–731 (2013)

    Article  MATH  Google Scholar 

  15. B. Ghaddar, J. Naoum-Sawaya, A. Kishimoto, N. Taheri, B. Eck, A lagrangian decomposition approach for the pump scheduling problem in water networks. Eur. J. Operation. Res. 241(2), 490–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. M.L. Blom, A.R. Pearce, P.J. Stuckey, A decomposition-based algorithm for the scheduling of open-pit networks over multiple time periods. Manag. Sci. 62(10), 3059–3084 (2016)

    Article  Google Scholar 

  17. P. Prosser, A reactive scheduling agent. Eleventh Int. Joint Conf. Artificial Intelligen. 89, 1004–1009 (1989)

    MATH  Google Scholar 

  18. X. Chen, Z. Xu, G. Dsa, X. Han, and H. Jiang. Semi-online hierarchical scheduling problems with buffer or rearrangements. Informat. Process. Lett. 113(4), 127–131 (2013)

    Article  Google Scholar 

  19. X. Chen, N. Ding, G. Dsa, X. Han, and H. Jiang. Online hierarchical scheduling on two machines with known total size of low-hierarchy jobs. Int. J. Comput. Mathemat. 92(5), 873–881 (2015)

    Article  Google Scholar 

  20. A.A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, I. Stoica. Hierarchical scheduling for diverse datacenter workloads. in Proceedings of the 4th Annual Symposium on Cloud Computing, p. 4. ACM (2013)

    Google Scholar 

  21. J.F. O’Kane, A knowledge-based system for reactive scheduling decision-making in FMS. J. Intelligen. Manufact. 11(5), 461–474 (2000)

    Article  Google Scholar 

  22. I. Motawa, A. Almarshad, A knowledge-based BIM system for building maintenance. Automat. Construct. 29, 173–182 (2013)

    Article  Google Scholar 

  23. Y. Sotskov, N.Y. Sotskova, F. Werner, Stability of an optimal schedule in a job shop. Omega 25(4), 397–414 (1997)

    Article  Google Scholar 

  24. F. Guinand, A. Moukrim, E. Sanlaville, Sensitivity analysis of tree scheduling on two machines with communication delays. Parallel Comput. 30(1), 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  25. Z. Jia, M.G. Ierapetritou, Short-term scheduling under uncertainty using MILP sensitivity analysis. Indust. Eng. Chem. Res. 43, 3782–3791 (2004)

    Article  Google Scholar 

  26. S. Maqsood, S. Noor, M.K. Khan, A. Wood, Hybrid genetic algorithm (GA) for job shop scheduling problems and its sensitivity analysis. Int. J. Intelligen. Syst. Technol. Appl. 11(1–2), 49–62 (2012)

    Google Scholar 

  27. J.C. Thiele, W. Kurth, V. Grimm, Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using NetLogo and ’R’. J. Artif. Soc. Social Simulat. 17(3), 11 (2014)

    Article  Google Scholar 

  28. A. Muzhikyan, A.M. Farid, K. Youcef-Toumi, An enterprise control assessment method for variable energy resource-induced power system imbalances 2014;Part II: Parametric sensitivity analysis. IEEE Trans. Indust. Electron. 62(4), 2459–2467 (2015)

    Article  Google Scholar 

  29. N.G. Hall, M.E. Posner, Sensitivity analysis for scheduling problems. J. Schedul. 7(1), 49–83 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Z.K. Li, M. Ierapetritou, Process scheduling under uncertainty: review and challenges. Comput. Chem. Eng. 32, 715–727 (2008)

    Article  Google Scholar 

  31. J. Dorn, R. Kerr, G. Thalhammer, Reactive scheduling: improving robustness of schedules and restricting the effects of shop floor disturbances by fuzzy reasoning. Int. J. Human Comput. Studies 42, 687–704 (1995)

    Article  MATH  Google Scholar 

  32. M. Hapke, A. Jaskievicz, R. Slowinski, Fuzzy project scheduling system for software development. Fuzzy Sets Syst. 21, 101–117 (1994)

    Article  MathSciNet  Google Scholar 

  33. S.A. Torabi, N. Sahebjamnia, S.A. Mansouri, M. Aramon, Bajestani. A particle swarm optimization for a fuzzy multi-objective unrelated parallel machines scheduling problem. Appl. Soft Comput. 13(12), 4750–4762 (2013)

    Article  Google Scholar 

  34. W.C. Yeh, P.J. Lai, W.C. Lee, M.C. Chuang, Parallel-machine scheduling to minimize makespan with fuzzy processing times and learning effects. Informat. Sci. 269, 142–158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. I. Bakry, O. Moselhi, T. Zayed, Fuzzy dynamic programming for optimized scheduling of repetitive construction projects. in IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp. 1172–1176 (2013)

    Google Scholar 

  36. V. Dixit, R.K. Srivastava, A. Chaudhuri, Procurement scheduling for complex projects with fuzzy activity durations and lead times. Comput. Indust. Eng. 76, 401–414 (2014)

    Article  Google Scholar 

  37. J. Xu, Y. Ma, X. Zehui, A bilevel model for project scheduling in a fuzzy random environment. IEEE Trans. Syst. Man Cybernet. 45(10), 1322–1335 (2015)

    Article  Google Scholar 

  38. Y. Xu, L. Wang, S.Y. Wang, M. Liu, An effective teaching-learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing 148, 260–268 (2015)

    Article  Google Scholar 

  39. M.A. Al-Fawzan, M. Haouari, A bi-objective model for robust resource-constrained project scheduling. Int. J. Product. Econom. 96, 175–187 (2005)

    Article  Google Scholar 

  40. H. Gao, Building robust schedules using temporal protection - an empirical study of constraint based scheduling under machine failure uncertainty (University of Toronto, Thesis, 1995)

    Google Scholar 

  41. E. Goldratt. Critical Chain. The North River Press (1997)

    Google Scholar 

  42. A. Davenport, C. Gefflot, C. Beck, Slack-based techniques for robust schedules. in Sixth European Conference on Planning, pp. 43–49 (2014)

    Google Scholar 

  43. P. Kobyalanski, D. Kutcha, A note on the paper by M. A. Al-Fawzan and M. Haouari about A bi-objective model for robust resource-constrained project scheduling. Int. J. Product. Econom. 107, 496–501 (2007)

    Article  Google Scholar 

  44. H. Chtourou, M. Haouari, A two stage priority rule based algorithm for robust resource constrained project scheduling. Comput. Indust. Eng. 55(1), 183–194 (2008)

    Article  Google Scholar 

  45. A.H.L. Chen, Y.C. Liang, J.D. Padilla, An entropy-based upper bound methodology for robust predictive multi-mode RCPSP schedules. Entropy 16, 5032–5067 (2014)

    Article  Google Scholar 

  46. J. Rezaeian, F. Soleimani, S. Mohaselafshary, A. Arab, Using a meta-heuristic algorithm for solving the multi-mode resource-constrained project scheduling problem. Int. J. Operation. Res. 24(1), 1–16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. P. Lamas, E. Demeulemeester, A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations. J. Sched. 19(4), 409–429 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. O. Alagz, M. Azizoglu, Rescheduling of identical parallel machines under machine eligibility constraints. Eur. J. Operation. Res. 149(3), 523–532 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. M.S. Akturk, E. Gorgulu, Match-up scheduling under a machine breakdown. Eur. J. Operation. Res. 112, 81–97 (1999)

    Article  MATH  Google Scholar 

  50. P. Mauguire, J.C. Billaut, C. Artigues, Grou** jobs on a single machine with heads and tails to represent a family of dominant schedules. In 8th Workshop on Project Management and Scheduling, Valencia, pp. 3–5 (2002)

    Google Scholar 

  51. F. Quesnel, A. Lbre, M. Sdholt, Cooperative and reactive scheduling in large-scale virtualized platforms with DVMS. Concurr. Comput. Pract. Exp. 25(12), 1643–1655 (2013)

    Article  Google Scholar 

  52. L. Nie, L. Gao, P. Li, X. Li, A GEP-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates. J. Intelligen. Manufact. 24(4), 763–774 (2013)

    Article  Google Scholar 

  53. S. Van de Vonder, Proactive-reactive procedures for robust project scheduling (Katholieke Universiteit Leuven, Thesis, 2006)

    MATH  Google Scholar 

  54. S. Van de Vonder, F. Ballestn, E. Demeulemeester, and W. Herroelen. Heuristic procedures for reactive project scheduling. Comput. Indust. Eng. 52(1), 11–28 (2007)

    Article  Google Scholar 

  55. S. Van de Vonder, E. Demeulemeester, W. Herroelen, Proactive heuristic procedures for robust project scheduling: an experimental analysis. Eur. J. Operation. Res. 189(3), 723–733 (2008)

    Article  MATH  Google Scholar 

  56. O. Lambrechts, E. Demeulemeester, W. Herroelen, Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. J. Sched. 11(2), 121–136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. O. Lambrechts, E. Demeulemeester, W. Herroelen, A tabu search procedure for develo** robust predictive project schedules. Int. J. Product. Econom. 111(2), 496–508 (2007)

    Google Scholar 

  58. G. Zhu, J. Bard, G. Yu, Disruption management for resource-constrained project scheduling. J. Operation. Res. Soc. 56(4), 365–381 (2005)

    Article  MATH  Google Scholar 

  59. F. Deblaere, E. Demeulemeester, W. Herroelen, Reactive scheduling in the multi-mode RCPSP. Comput. Operation. Res. 38(1), 63–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. W. Herroelen. A Risk Integrated Methodology for Project Planning Under Uncertainty, book section 9, pp. 203–217. Springer, New York (2014)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Science and Technology Taiwan grants: [MOST103-2221-E-253-005 and MOST104-2221-E-253-002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Hsiang-Ling Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, A.HL., Liang, YC., Padilla, J.D. (2018). Production Scheduling Tools to Prevent and Repair Disruptions in MRCPSP. In: Ao, SI., Kim, H., Castillo, O., Chan, AS., Katagiri, H. (eds) Transactions on Engineering Technologies. IMECS 2017. Springer, Singapore. https://doi.org/10.1007/978-981-10-7488-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7488-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7487-5

  • Online ISBN: 978-981-10-7488-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation