Evolving Immunotherapy Approaches for Hepatocellular Carcinoma

  • Chapter
  • First Online:
Molecular Diagnosis and Targeting for Thoracic and Gastrointestinal Malignancy

Part of the book series: Current Human Cell Research and Applications ((CHCRA))

  • 468 Accesses

Abstract

Hepatocellular carcinoma (HCC) is a serious therapeutic challenge, with poor prognosis. Therapeutic options for HCC are limited, particularly for the patients at advanced stage who are not eligible for curative therapies such as radio-frequency ablation (RFA), hepatectomy, or hepatic transplantation. Thus, novel approaches are urgently needed for the treatment of this prevalent malignancy. Recent advance in cancer immunotherapy such as immune checkpoint blockade has revolutionized the landscape of cancer therapy, and the efficacy of several classes of immunotherapy has been tested in clinical trials. The current issue reviewed the current status of immunotherapy for HCC as well as the unique tolerogenic character of liver immune system and the immune evasion mechanisms of HCC. Taking into the account of the immunosuppressive forces operating in the hepatic tumor microenvironment—combination therapies of different strategies might be encouraged for achieving optimal clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACT:

Adoptive cell transfer

AE:

Adverse event

AFP:

α-Fetoprotein

ALT:

Alanine aminotransferase

APC:

Antigen-presenting cell

AST:

Aminotransferase

CAR:

Chimeric antigen receptor

CIK:

Cytokine-induced killer cell

CTL:

Cytotoxic T lymphocyte

CTLA-4:

Cytotoxic T lymphocyte protein-4

DC:

Dendritic cell

DCR:

Disease control rate

DFS:

Disease-free survival

GITR:

Glucocorticoid-induced TNFR-related protein

GPC3:

Glypican-3

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

KC:

Kupffer cell

KIR:

Killer inhibitory receptor

LAG3:

Lymphocyte-activation gene 3

LSEC:

Liver sinusoidal endothelial cell

MART-1:

Melanoma-associated antigen recognized by T cells-1

MDSC:

Myeloid-derived suppressor cell

MHC:

Major histocompatibility complex

OS:

Overall survival

PD-1:

Programmed cell death protein-1

PR:

Partial response rate

RECIST:

Response evaluation criteria in solid tumors

RFA:

Radio-frequency ablation

RFS:

Recurrence-free survival

TAA:

Tumor-associated antigens

TACE:

Transarterial chemoembolization

TAM:

Tumor-associated macrophage

TCR:

T cell receptor

TERT:

Telomerase reverse transcriptase

TGF-β:

Transforming growth factor-β

TIL:

Tumor-infiltrating lymphocyte

TIM-3:

T cell immunoglobulin and mucin-domain containing-3

Treg:

Regulatory T cell

TTP:

Time to progression

References

  1. McGlynn KA, Petrick JL, London WT. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis. 2015;19:223–38.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bosetti C, Turati F, La Vecchia C. Hepatocellular carcinoma epidemiology. Best Pract Res Clin Gastroenterol. 2014;28:753–70.

    Article  PubMed  Google Scholar 

  3. Welzel TM, Graubard BI, Quraishi S, et al. Population-attributable fractions of risk factors for hepatocellular carcinoma in the United States. Am J Gastroenterol. 2013;108:1314–21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Okazaki T, Chikuma S, Iwai Y, et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14:1212–8.

    Article  CAS  PubMed  Google Scholar 

  5. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Melero I, Berman DM, Aznar MA, et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer. 2015;15(8):457–72.

    Article  CAS  PubMed  Google Scholar 

  7. Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147–63.

    Article  CAS  PubMed  Google Scholar 

  8. Limmer A, Ohl J, Kurts C, et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+T cells results in antigen specific T-cell tolerance. Nat Med. 2000;6:1348–54.

    Article  CAS  PubMed  Google Scholar 

  9. Diehl L, Schurich A, Grochtmann R, et al. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+T cell tolerance. Hepatology. 2008;47:296–305.

    Article  CAS  PubMed  Google Scholar 

  10. von Oppen N, Schurich A, Hegenbarth S, et al. Systemic antigen cross-presented by liver sinusoidal endothelial cells induces liver-specific CD8 T-cell retention and tolerization. Hepatology. 2009;49:1664–72.

    Article  CAS  Google Scholar 

  11. Mackay IR. Hepatoimmunology: a perspective. Immunol Cell Biol. 2002;80:36–44.

    Article  PubMed  Google Scholar 

  12. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006;26:1175–86.

    Article  CAS  PubMed  Google Scholar 

  13. You Q, Cheng L, Kedl RM, et al. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology.

    Google Scholar 

  14. Knolle P, Schlaak J, Uhrig A. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol. 1995;22:226–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang M, Xu S, Han Y, et al. Apoptotic cells attenuate fulminant hepatitis by priming Kupffer cells to produce interleukin-10 through membrane-bound TGF-β. Hepatology. 2011;53:306–16.

    Article  CAS  PubMed  Google Scholar 

  16. Knolle PA, Gerken G. Local control of the immune response in the liver. Immunol Rev. 2000;174:21–34.

    Article  CAS  PubMed  Google Scholar 

  17. Breous E, Somanathan S, Vandenberghe LH, et al. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology. 2009;50:612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pillarisetty VG, Shah AB, Miller G, et al. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol. 2004;172:1009–17.

    Article  CAS  PubMed  Google Scholar 

  19. Lau AH, Thomson AW. Dendritic cells and immune regulation in the liver. Gut. 2003;52:307–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bamboat ZM, Stableford JA, Plitas G, et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol. 2009;182:1901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holz LE, Benseler V, Bowen DG, et al. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology. 2008;135:989–97.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  CAS  PubMed  Google Scholar 

  23. Matsui M, Machida S, Itani-Yohda T, et al. Downregulation of the proteasome subunits, transporter, and antigen presentation in hepatocellular carcinoma, and their restoration by interferon-gamma. J Gastroenterol Hepatol. 2002;17:897–907.

    Article  CAS  PubMed  Google Scholar 

  24. Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015;12:681–700.

    Article  CAS  PubMed  Google Scholar 

  25. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010;11:7–13.

    Article  CAS  PubMed  Google Scholar 

  26. Chen KJ, Lin SZ, Zhou L, et al. Selective recruitment of regulatory T cell through CCR6–CCL20 in hepatocellular carcinoma fosters tumor progression and predicts poor prognosis. PLoS One. 2011;6:e24671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arihara F, Mizukoshi E, Kitahara M, et al. Increase in CD14+HLA-DR −/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother. 2013;62:1421–30.

    Article  CAS  PubMed  Google Scholar 

  28. Hoechst B, Ormandy LA, Ballmaier M, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+CD25+Foxp3+ T cells. Gastroenterology. 2008;135:234–43.

    Article  CAS  PubMed  Google Scholar 

  29. Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 2007;13:828–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian B, Deng Y, Im JH, et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One. 2009;4:e6562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467–77.

    Article  CAS  PubMed  Google Scholar 

  32. Epstein RJ, Leung TW. Reversing hepatocellular carcinoma progression by using networked biological therapies. Clin Cancer Res. 2007;13:11–7.

    Article  CAS  PubMed  Google Scholar 

  33. Yoong KF, McNab G, Hubscher SG, et al. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma. J Immunol. 1998;160:3978–88.

    CAS  PubMed  Google Scholar 

  34. Gao Q, Qiu SJ, Fan J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;2007(25):2586–93.

    Article  Google Scholar 

  35. Flecken T, Schmidt N, Hild S, et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 2014;59:1415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Okazaki T, Iwai Y, Honjo T. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol. 2002;14:779–82.

    Article  CAS  PubMed  Google Scholar 

  37. Kuang DM, Zhao Q, Peng C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206:1327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu K, Kryczek I, Chen L, et al. Kupffer cell suppression of CD8+T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009;69:8067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeng Z, Shi F, Zhou L, et al. Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS One. 2011;6:e23621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cariani E, Pilli M, Zerbini A, et al. Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS One. 2012;7:e32493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15:971–9.

    Article  CAS  PubMed  Google Scholar 

  42. Wang BJ, Bao JJ, Wang JZ, et al. Immunostaining of PD-1/PD-Ls in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J Gastroenterol. 2011;17:3322–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. El-Khoueiry AB, Melero I, Crocenzi TS, et al. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. J Clin Oncol. 2015;33(suppl):Abstract LBA101.

    Article  Google Scholar 

  44. Segal N, Hamid O, Hwu W, et al. A phase I multi-arm dose-expansion study of the anti-programmed cell death-ligand-1 (PD-L1) antibody MEDI4736: preliminary data. Ann Oncol. 2014;25:iv361–72.

    Article  Google Scholar 

  45. Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily—CTLA-4. Nature. 1987;328:267–70.

    Article  CAS  PubMed  Google Scholar 

  46. Walker LS, Sansom DM. Confusing signals: recent progress in CTLA-4 biology. Trends Immunol. 2015;36:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5.

    Article  CAS  PubMed  Google Scholar 

  48. Sangro B, Gomez-Martin C, de la Mata M, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59:81–8.

    Article  CAS  PubMed  Google Scholar 

  49. Duffy AG, Makarova-Rusher OV, Kerkar SP, et al. A pilot study of tremelimumab–a monoclonal antibody against CTLA-4–in combination with either trans catheter arterial chemoembolization (TACE) or radiofrequency ablation (RFA) in patients with hepatocellular carcinoma (HCC). J Clin Oncol. 2015;33(suppl):abstr 4081.

    Google Scholar 

  50. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3--potential mechanisms of action. Nat Rev Immunol. 2015;151:45–56.

    Google Scholar 

  51. Li FJ, Zhang Y, ** GX, et al. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol Lett. 2013;150:116–22.

    Article  CAS  PubMed  Google Scholar 

  52. Cariani E, Missale G. KIR/HLA immunogenetic background influences the evolution of hepatocellular carcinoma. Oncoimmunology. 2013;2:e26622.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li H, Wu K, Tao K, et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology. 2012;56:1342–51.

    Article  CAS  PubMed  Google Scholar 

  54. Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 1998;16:111–35.

    Article  CAS  PubMed  Google Scholar 

  55. Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, et al. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res. 2013;19:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gauttier V, Judor JP, Le Guen V, et al. Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. Int J Cancer. 2014;135:2857–67.

    Article  CAS  PubMed  Google Scholar 

  57. Morales-Kastresana A, Sanmamed MF, Rodriguez I, et al. Combined immunostimulatory monoclonal antibodies extend survival in an aggressive transgenic hepatocellular carcinoma mouse model. Clin Cancer Res. 2013;19:6151–62.

    Article  CAS  PubMed  Google Scholar 

  58. Beatty GL, Torigian DA, Chiorean EG, et al. A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin Cancer Res. 2013;19:6286–95.

    Article  CAS  PubMed  Google Scholar 

  59. Zoll B, Lefterova P, Csipai M, et al. Generation of cytokine-induced killer cells using exogenous interleukin-2, −7 or −12. Cancer Immunol Immunother. 1998;47:221–6.

    Article  CAS  PubMed  Google Scholar 

  60. Introna M, Golay J, Rambaldi A. Cytokine induced killer (CIK) cells for the treatment of haematological neoplasms. Immunol Lett. 2013;155:27–30.

    Article  CAS  PubMed  Google Scholar 

  61. Li X, Dai D, Song X, et al. A meta-analysis of cytokine-induced killer cells therapy in combination with minimally invasive treatment for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2014;38:583–91.

    Article  CAS  PubMed  Google Scholar 

  62. Ma Y, Xu YC, Tang L, et al. Cytokine- induced killer (CIK) cell therapy for patients with hepatocellular carcinoma: efficacy and safety. Exp Hematol Oncol. 2012;1:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ellebaek E, Iversen TZ, Junker N, et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose interleukin-2 in metastatic melanoma patients. J Transl Med. 2012;10:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang SS, Tang Y, Zhang YJ, et al. A phase I clinical trial utilizing autologous tumor-infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Oncotarget. 2015;6:41339–49.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Johnson LA, Morgan RA, Dudley ME, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gehring AJ, Xue SA, Ho ZZ, et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J Hepatol. 2011;55:103–10.

    Article  CAS  PubMed  Google Scholar 

  68. Jensen MC, Riddell SR. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev. 2014;257:127–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006;12:6106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lamers CH, Sleijfer S, van Steenbergen S, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21:904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Greten TF, Duffy AG, Korangy F. Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res. 2013;19:6678–85.

    Article  CAS  PubMed  Google Scholar 

  73. Butterfield LH, Ribas A, Meng WS, et al. T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin Cancer Res. 2003;9:5902–8.

    CAS  PubMed  Google Scholar 

  74. Sawada Y, Yoshikawa T, Shimomura M, et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res. 2012;18:3686–96.

    Article  CAS  PubMed  Google Scholar 

  75. Saini N, Srinivasan R, Chawla Y, et al. Telomerase activity, telomere length and human telomerase reverse transcriptase expression in hepatocellular carcinoma is independent of hepatitis virus status. Liver Int. 2009;29:1162–70.

    Article  CAS  PubMed  Google Scholar 

  76. Shimada M, Hasegawa H, Gion T, et al. The role of telomerase activity in hepatocellular carcinoma. Am J Gastroenterol. 2000;95:748–52.

    Article  CAS  PubMed  Google Scholar 

  77. Greten TF, Forner A, Korangy F, et al. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer. 2010;10:209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  79. Cai XY, Gao Q, Qiu SJ, et al. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol. 2006;132:293–301.

    Article  PubMed  Google Scholar 

  80. Bray SM, Vujanovic L, Butterfield LH. Dendritic cell-based vaccines positively impact natural killer and regulatory T cells in hepatocellular carcinoma patients. Clin Dev Immunol. 2011;2011:249281. https://doi.org/10.1155/2011/249281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sun JC, Pan K, Chen MS, et al. Dendritic cells-mediated CTLs targeting hepatocellular carcinoma stem cells. Cancer Biol Ther. 2010;10:368–75.

    Article  CAS  PubMed  Google Scholar 

  82. El Ansary M, Mogawer S, Elhamid SA, et al. Immunotherapy by autologous dendritic cell vaccine in patients with advanced HCC. J Cancer Res Clin Oncol. 2013;139:39–48.

    Article  PubMed  CAS  Google Scholar 

  83. Lee WC, Wang HC, Hung CF, et al. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J Immunother. 2005;28:496–504.

    Article  PubMed  Google Scholar 

  84. Palmer DH, Midgley RS, Mirza N, et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 2009;49:124–32.

    Article  PubMed  Google Scholar 

  85. Tada F, Abe M, Hirooka M, et al. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int J Oncol. 2012;41:1601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hernández-Alcoceba R. Recent advances in oncolytic virus design. Clin Transl Oncol. 2011;13:229–39.

    Article  PubMed  Google Scholar 

  87. Kim JH, Oh JY, Park BH, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 2006;14:361–70.

    Article  CAS  PubMed  Google Scholar 

  88. Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19:329–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gros A, Robbins PF, Yao X, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124:2246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sawada Y, Yoshikawa T, Shimomura M, et al. Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Int J Oncol. 2015;46:28–36.

    Article  CAS  PubMed  Google Scholar 

  92. Karyampudi L, Lamichhane P, Scheid AD, et al. Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody. Cancer Res. 2014;74:2974–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Le DT, Lutz E, Uram JN, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2013;36:382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ayaru L, Pereira SP, Alisa A, et al. Unmasking of alpha-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol. 2007;178:1914–22.

    Article  CAS  PubMed  Google Scholar 

  95. Chuand KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14:199–208.

    Article  CAS  Google Scholar 

  96. Waitz R, Solomon SB, Petre EN, et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res. 2012;72:430–9.

    Article  CAS  PubMed  Google Scholar 

  97. Victor CT, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;16:373–7.

    Article  CAS  Google Scholar 

  98. Zitvogel L, Apetoh L, Ghiringhelli F, et al. The anticancer immune response: indispensable for therapeutic success? J Clin Invest. 2008;118:1991–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Duffy AG, Greten TF. Immunological off-target effects of standard treatments in gastrointestinal cancers. Ann Oncol. 2014;25:24–32.

    Article  CAS  PubMed  Google Scholar 

  100. Dijkgraaf EM, Santegoets SJ, Reyners AK, et al. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget. 2015;6:32228–43.

    Article  PubMed  PubMed Central  Google Scholar 

  101. van der Sluis TC, van Duikeren S, Huppelschoten S, et al. Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res. 2015;21:781–94.

    Article  PubMed  CAS  Google Scholar 

  102. Morisaki T, Hirano T, Koya N, et al. NKG2D-directed cytokine-activated killer lymphocyte therapy combined with gemcitabine for patients with chemoresistant metastatic solid tumors. Anticancer Res. 2014;34:4529–38.

    CAS  PubMed  Google Scholar 

  103. Chen ML, Yan BS, Lu WC, et al. Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment antitumor immunity. Int J Cancer. 2014;134:319–31.

    Article  PubMed  CAS  Google Scholar 

  104. Sprinzl MF, Reisinger F, Puschnik A, et al. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology. 2013;57:2358–68.

    Article  CAS  PubMed  Google Scholar 

  105. Chen Y, Ramjiawan RR, Reiberger T, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61:1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hipp MM, Hilf N, Walter S, et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood. 2008;111:5610–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Takahashi, K., Marusawa, H. (2018). Evolving Immunotherapy Approaches for Hepatocellular Carcinoma. In: Shimada, Y., Yanaga, K. (eds) Molecular Diagnosis and Targeting for Thoracic and Gastrointestinal Malignancy. Current Human Cell Research and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-6469-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6469-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6468-5

  • Online ISBN: 978-981-10-6469-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation