Research Progress of Aldehyde Ketone Reductase for Asymmetric Catalysis of Chiral Compounds

  • Conference paper
  • First Online:
Advances in Applied Biotechnology (ICAB 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 444))

Included in the following conference series:

Abstract

Aldehyde ketone reductase (AKR) belongs to the redox enzyme superfamily. The aldo-keto reductase (AKR) protein superfamily contains over 190 members that fall into 16 families. Its biological catalysis in the preparation of chiral compounds has significant advantages. Therefore, application of aldehyde ketone reductase gains more benefit as industrial catalysts. Recently, a variety of microbial aldehyde ketone reductase has been used in the synthesizing the high value of chiral compounds. Here we reviewed structure and functional modification of aldehyde ketone reductase protein, gene mining of novel AKR enzyme for industrial catalysts and co-enzyme regeneration using the genome database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Penning TM (2015) The aldo-keto reductases (AKRs): overview. Chem Biol Interact 234:236–246

    Article  CAS  Google Scholar 

  2. Ren D, Villeneuve NF, Jiang T et al (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A 108(4):1433–1438

    Article  CAS  Google Scholar 

  3. Couture JF, Legrand P, Cantin L et al (2004) Loop relaxation, a mechanism that explains the reduced specificity of rabbit 20α-hydroxysteroid dehydrogenase, a member of the aldo-keto reductase superfamily. J Mol Biol 339:89–102

    Article  CAS  Google Scholar 

  4. Sanli G, Blaber M (2001) Structural assembly of the active site in an aldo-keto reductase by NADPH cofactor. J Mol Biol 309(5):1209–1218

    Article  CAS  Google Scholar 

  5. Widboom PF, Fielding EN, Liu Y et al (2007) Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis. Nature 447(7142):342–345

    Article  CAS  Google Scholar 

  6. Ziegelmann-Fjeld KI, Musa MM, Phillips RS et al (2007) A Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase mutant derivative highly active and stereoselective on phenylacetone and benzylacetone. Protein Eng Des Sel 20(2):47–55

    Article  CAS  Google Scholar 

  7. Zhu D, Yang Y, Majkowicz S et al (2008) Inverting the enantioselectivity of a carbonyl reductase via substrate—enzyme docking-guided point mutation. Org Lett 10(4):525–528

    Article  CAS  Google Scholar 

  8. Morikawa S, Nakai T, Yasohara Y et al (2005) Highly active mutants of carbonyl reductase s1 with inverted coenzyme specificity and production of optically active alcohols. Biosci Biotechnol Biochem 69(3):544–552

    Article  CAS  Google Scholar 

  9. Zhang R, Xu Y, Sun Y et al (2009) Ser67Asp and His68Asp substitutions in Candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction. Appl Environ Microbiol 75(7):2176–2183

    Article  CAS  Google Scholar 

  10. Qin HM, Yamamura A, Miyakawa T et al (2013) Crystal structure of conjugated polyketone reductase (CPR-C1) from Candida parapsilosis IFO 0708 complexed with NADPH. Proteins 81:2059–2063

    Article  CAS  Google Scholar 

  11. Fewer M, Martínez-Abarca F, Golyshin PN (2005) Mining genomes and metagenomes for novel catalysts. Curr Opin Biotechnol 16(6):588–593

    Article  Google Scholar 

  12. Hidalgo A, Akond MA, Kita K et al (2001) Isolation and primary structural analysis of two conjugated polyketone reductases from Candida parapsilosis. Biosci Biotechnol Biochem 65(12):2785–2788

    Article  CAS  Google Scholar 

  13. Kaluzna IA, Matsuda T, Sewell AK et al (2004) Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions. J Am Chem Soc 126(40):12827–12832

    Article  CAS  Google Scholar 

  14. Guo RY, Nie Y, Mu XQ et al (2014) Preparation of asymmetric transformation of (S)-N, N-dimethy1-3-hydroxyl-3-(2-thieny1)-1-propanamine(DHTP) by the novel AKR. Cheml Ind Eng Progr 33(9):2344–2349

    CAS  Google Scholar 

  15. Zhao H, Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 4(6):583–589

    Article  Google Scholar 

  16. Kataoka K, Kita M, Wada Y, Yasohara J et al (2003) Novel bioreduction system for the production of chiral alcohols. Appl Microbiol Biotechnol 62:437–445

    Article  CAS  Google Scholar 

  17. Chin-Joe I, Straathof AJ, Pronk JT et al (2001) Influence of the ethanol and glucose supply rate on the rate and enantioselectivity of 3-oxo ester reduction by baker’s yeast. Biotechnol Bioeng 75:29–38

    Article  CAS  Google Scholar 

  18. Makino Y, Ding JY, Negoro S et al (1989) Purification and characterization of a new glucose dehydrogenase from vegetative cells of Bacillus megaterimn. J Ferment Bioeng 67:374–379

    Article  CAS  Google Scholar 

  19. Kizaki N, Yasohara Y, Hasegawa J et al (2001) Synthesis of optically pure ethyl(S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Microbiol Biotechnol 55(5):590–595

    Article  CAS  Google Scholar 

  20. Ni Y, Li CX, Wang LJ et al (2011) Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Org Biomol Chem 9(15):5463–5468

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Min Qin or Fu** Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Li, S. et al. (2018). Research Progress of Aldehyde Ketone Reductase for Asymmetric Catalysis of Chiral Compounds. In: Liu, H., Song, C., Ram, A. (eds) Advances in Applied Biotechnology. ICAB 2016. Lecture Notes in Electrical Engineering, vol 444. Springer, Singapore. https://doi.org/10.1007/978-981-10-4801-2_80

Download citation

Publish with us

Policies and ethics

Navigation