Research Progress of Squalene Synthase on Function and Application

  • Conference paper
  • First Online:
Advances in Applied Biotechnology (ICAB 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 444))

Included in the following conference series:

  • 1887 Accesses

Abstract

Squalene (SQ) is an unsaturated triterpene which is formed by six linked isoprenes, it is a key intermediate product in the metabolic pathway of cholesterol synthesis. The synthetic process of cholesterol is a key step in the biosynthesis of steroids, at the same time this step is a bifurcate point from the isoprenoid central metabolic pathway into the triterpenoid branch biosynthesis. The squalene synthase (SQS) is a key enzyme in isoprenoid synthesis. Two molecules of farnesyl pyrophosphate (FPP) are catalyzed into a 30-carbon linear squalene molecule. This paper systematically reviews the metabolic mechanism, research achievements of SQS, and broad applications in biosynthetic pathways and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Silva AAS, Morais SM, Falcão MJC et al (2014) Activity of cycloartane-type triterpenes and sterols isolated from Musa paradisiaca fruit peel against Leishmania infantum chagasi. Phytomedicine 21(11):1419–1423

    Article  CAS  Google Scholar 

  2. Lukić M, Lukić I, Krapac M et al (2013) Sterols and triterpene diols in olive oil as indicators of variety and degree of ripening. Food Chem 136(1):251–258

    Article  Google Scholar 

  3. Batista I, Nunes ML (1992) Characterisation of shark liver oils. Fish Res 14(4):329–334

    Article  Google Scholar 

  4. Hye JC, Taylor W, Timothy P et al (2013) Vibrational spectra and DFT calculations of squalene. J Mol Struct 1032:203–206

    Article  Google Scholar 

  5. Harivardhan LR, Squalene CP (2009) A natural triterpene for use in disease management and therapy. J Adv Drug Delivery Rev 61(15):1412–1426

    Google Scholar 

  6. Kin S, Karadeniz F (2012) Biological importance and application of squalene and squalane. Adv Food Nutr Res 65:223–233

    Article  Google Scholar 

  7. Pragst F, Auwärter V, Kiessling B et al (2004) Wipe-test and patch-test for alcohol misuse based on the concentration ratio of fatty acid ethyl esters and squalene C FAEE/C SQ in skin surface lipids. Forensic Sci Int 143(2):77–86

    Article  CAS  Google Scholar 

  8. Rissmann R, Oudshoorn MH, Kocks E et al (2008) Lanolin-derived lipid mixtures mimic closely the lipid composition and organization of vernix caseosa lipids. Biochim Biophys Acta (BBA)-Biomembr 1778(10):2350–2360

    Google Scholar 

  9. Preez HD (2008) Squalene-antioxidant of the future. Nat Med 33:106–112

    Google Scholar 

  10. Kelly GS (1999) Squalene and its potential clinical uses. Altern Med Rev 4(1):30–36

    Google Scholar 

  11. Newmark HL (1997) Squalene, olive oil and cancer risk review and hypothesis. Cancer Epidemol 889(1):193–203

    Google Scholar 

  12. Chinthalapally VR, Newmark HL, Bandaru SR (1998) Chemopreventive effect of squalene on colon cancer. Carcinogenesis 19(2):287–290

    Article  Google Scholar 

  13. Desai KN, Wei H, Lamartiniere CA (1996) The preventive and therapeutic of the squalene-containing compound, Roidex on tumor promotion and regression. Cancer Lett 101(1):93–96

    Article  CAS  Google Scholar 

  14. Nowicki R, Baraska-Rybak W (2007) Shark liver oil as a supporting therapy in atopic dermatitis. Polski Merkuriusz Lekarski 22(130):312–313

    Google Scholar 

  15. Lewkowicz N, Lewkowicz P, Kurnatowska A et al (2006) Biological action and clinical application of shark liver oil. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego 20(119):598–601

    Google Scholar 

  16. Jennings SM, Tsay YH, Fisch TM et al (1991) Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci U S A 88(16):6038–6042

    Google Scholar 

  17. Tansey TR, Shechter I (2000) Structure and regulation of mammalian squalene synthase. Biochim Biophys Acta 1529(23):49–62

    Article  CAS  Google Scholar 

  18. Liu CI, Jeng WY, Chang WJ et al (2014) Structural insights into the catalytic mechanism of human squalene synthase. Acta Crystallogr A 70(2):231–241

    CAS  Google Scholar 

  19. Gu P, Ishii Y, Spencer TA et al (1998) Function-structure studies and identification of three enzyme domains involved in the catalytic activity in rat hepatic squalene synthase. J Biol Chem 273(16):12515–12525

    Google Scholar 

  20. Kourounakis AP, Katselou MG, Matralis AN et al (2011) Squalene synthase inhibitors: an update on the search for new antihyperlipidemic and antiatherosclerotic agents. Curt Med Chem 18(2):4418–4439

    Google Scholar 

  21. Paradise EM, Kirby J, Chan R et al (2008) Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol Bioeng 100(5):371–378

    Article  CAS  Google Scholar 

  22. Okazaki H, Tazoe F, Okazaki S et al (2006) Increased cholesterol biosynthesis and hypercholesterolemia in mice overexpressing squalene synthase in the liver. J Lipid Res 47(3):1950–1958

    Article  CAS  Google Scholar 

  23. Jarstfer MB, Zhang DL, Poulter CD (2002) Recombinant squalene synthase. Synthesis of non-head-to-tail isoprenoids in the absence of NADPH. J Am Chem Soc 124(11):8834–8845

    Article  CAS  Google Scholar 

  24. Lee MH, Jeong JH, Seo JW et al (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45(3):976–984

    Article  CAS  Google Scholar 

  25. Seo JW, Jeong JH, Shin CG et al (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66(5):869–877

    Article  CAS  Google Scholar 

  26. Kim YS, Cho JH, Park S et al (2011) Gene regulation patterns in tfiterpene biosynthetic pathway driven by overexpression of squalene synthase and methyl jasmonate elicitation in Bupleurum falcatum. Planta 233(13):343–355

    Article  CAS  Google Scholar 

  27. Yang Y, Laval S, Yu B (2014) Chemical synthesis of saponins, Chap 2. Adv Carbohydrate Chem Biochem 71:137–226

    Google Scholar 

  28. Zhao R-Y, **ao W, Cheng H-L et al (2010) Cloning and characterization of squalene synthase gene from Fusarium fujikuroi (Saw.) Wr. J Ind Microbiol Biotechnol 37(2):171–1182

    Google Scholar 

  29. Kim YJ, Zhang D, Yang DC (2015) Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 33(6):717–735

    Article  CAS  Google Scholar 

  30. Nakashima T, Inoue T, Oka A et al (1995) Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase. Proc Natl Acad Sci U S A 92(7):2328–2332

    Google Scholar 

  31. Blagg BS, Jarstfer MB, Rogers DH, Poulter CD (2002) Recombinant squalene synthase. A mechanism for the rearrangement of presqualene diphosphate to squalene. J Am Chem Soc 124(30):8846–8853

    Article  CAS  Google Scholar 

  32. Davidson MH (2007) Squalene synthase inhibition: a novel target for the management of dyslipidemia. Curt Atheroscler Rep 9(2):78–80

    Article  CAS  Google Scholar 

  33. Mookhtiar KA, Kalinowski SS, Zhang D et al (1994) Yeast squalene synthase. A mechanism for addition of substrates and activation by NADPH. J Biol Chem 269(21):1201–1207

    Google Scholar 

  34. Lin FY, Liu CL, Liu YL et al (2010) Mechanism of action and inhibition of dehydrosqualene synthase. Proc Natl Acad Sci U S A 107(11):21337–21342

    Google Scholar 

  35. Pandit J, Danley DE, Schulte GK et al (2000) Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J Biol Chem 275(8):30610–30617

    Article  CAS  Google Scholar 

  36. Huang D, Yao Y, Zhang H et al (2015) Directed optimization of a newly identified squalene synthase from Mortierella alpine based on sequence truncation and site directed mutagenesis. J Ind Microbiol Biotechnol 42:1341–1352

    Article  CAS  Google Scholar 

  37. Pandit J, Danley DE, Schulte GK et al (2000) Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J Biol Chem 275:30610–30617

    Article  CAS  Google Scholar 

  38. Lee Sungwon, Dale Poulter C (2008) Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J Bacteriol 190(11):3808–3816

    Article  CAS  Google Scholar 

  39. Furubayashi M, Li L, Katabami A et al (2014) Construction of carotenoid biosynthetic pathways using squalene synthase. FEBS Lett 588:436–442

    Article  CAS  Google Scholar 

  40. Tozawa R, Ishibashi S, Osuga J et al (1999) Embryonic lethality and defective neural tube closure in mice lacking squalene synthase. J Biol Chem 274:30843–30848

    Article  CAS  Google Scholar 

  41. Karst F, Lacroute F (1977) Ergosterol biosynthesis in Saccharomyces cerevisiae mutants deficient in early steps of pathway. Mol Gen Genet 154:269–277

    Article  CAS  Google Scholar 

  42. Grover A, Samuel G, Bisaria VS et al (2013) Enhanced withanolide production by overexpression of squalene synthase in Withania somnifera. J Biosci Bioeng 115(6):680–685

    Google Scholar 

  43. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Google Scholar 

  44. Rasool A, Zhang G, Li Z et al (2016) Engineering of the terpenoid pathway in Saccharomyces cerevisiae co-overproduces squalene and the non-terpenoid compound oleic acid. Chem Eng Sci 152:457–456

    Google Scholar 

  45. Rasool A, Ahmed MS, Li C (2016) Overproduction of squalene synergistically downregulates ethanol production in Saccharomyces cerevisiae. Chem Eng Sci 152:370–380

    Google Scholar 

  46. Kim SK, Karadeniz F (2012) Biological importance and applications of squalene and squalane. Adv Food Nutr 65:223–233

    Article  Google Scholar 

  47. Do R, Kiss RS, Gaudet D et al (2009) Squalene synthase: a critical enzyme in the cholesterol biosynthesis pathway. Clin Genet 75(5):19–29

    Article  CAS  Google Scholar 

  48. Gora1 WM, Wysocka-Kapcinska M et al (2016) Genetic engineering and molecular characterization of yeast strain expressing hybrid human-yeast squalene synthase as a tool for anti-cholesterol drug assessment. J Appl Microbiol 120:877–888

    Google Scholar 

  49. Armitage J (2007) The safety of statins in clinical practice. Lancet 370:1781–1790

    Article  CAS  Google Scholar 

  50. Liao JK (2011) Squalene synthase inhibitor lapaquistat acetate: could anything be better than statins. Circulation 123:1925–1928

    Article  Google Scholar 

  51. Shechter I, Klinger E, Rucker ML et al (1992) Solubilization, purification, and characterization of a truncated form of rat hepatic squalene synthetase. J Biol Chem 267(21):8628–8635

    CAS  Google Scholar 

  52. Stamellos KD, Shackelford JE, Shechter I et al (1993) Subcellular localization of squalene synthase in rat hepatic cells. Biochemical and immunochemical evidence. J Biol Chem 268(11):12825–12836

    CAS  Google Scholar 

  53. Jiang G, McKenzie TL, Conrad DG et al (1993) Transcriptional regulation by lovastatin and 25-hydroxycholesterol in HepG2 cells and molecular cloning and expression of the cDNA for the human hepatic squalene synthase. J Biol Chem 268(13):12818–12824

    CAS  Google Scholar 

  54. Summers C, Kant F, Charles AD (1993) Cloning, expression and characterisation of the cDNA encoding human hepatic squalene synthase, and its relationship to phytoene synthase. Gene 136(9):185–192

    Article  CAS  Google Scholar 

  55. Soltis DA, McMahon G, Caplan SL et al (1995) Expression, purification, and characterization of the human squalene synthase: use of yeast and baculoviral systems. Arch Biochem Biophys 316(26):713–723

    Article  CAS  Google Scholar 

  56. Uchida H, Yamashita H, Kajikawa M et al (2009) Cloning and characterization of a squalene synthase gene from a petroleum plant. Euphorbia tirucalli L. Planta 229(19):1243–1252

    Article  CAS  Google Scholar 

  57. Huang Z, Jiang K, Pi Y et al (2009) Molecular cloning and characterization of the yew gene encoding squalene synthase from Taxus cuspidate. J Biochem Mol Biol 40(2): 625–635

    Google Scholar 

  58. Zhao MW, Liang WQ, Zhang DB et al (2007) Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum. J Microbiol Biotechnol 17(2):1106–1112

    CAS  Google Scholar 

  59. Lograsso PV, Soltis DA, Boettcher BR (1993) Overexpression, purification, and kinetic characterization of a carboxyl-terminal-truncated yeast squalene synthetase. Arch Biochem Biophys 307(12):193–199

    Article  CAS  Google Scholar 

  60. Lee S, Pouiter CD (2008) Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J Bacteriol 190(15):3808–3816

    Article  CAS  Google Scholar 

  61. Sealey-Cardona M, Cammerer S, Jones S et al (2007) Kinetic characterization of squalene synthase from Trypanosoma cruzi: selective Inhibition by quinuclidine derivatives. Antimicrob Agents Chemother 51(3):2123–2129

    Article  CAS  Google Scholar 

  62. Shang N, Li Q, Ko T-P et al (2014) Squalene synthase as a target for Chagas disease therapeutics. PLoS Pathogen 10(5):1178–1191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Min Qin or Fu** Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Sun, D. et al. (2018). Research Progress of Squalene Synthase on Function and Application. In: Liu, H., Song, C., Ram, A. (eds) Advances in Applied Biotechnology. ICAB 2016. Lecture Notes in Electrical Engineering, vol 444. Springer, Singapore. https://doi.org/10.1007/978-981-10-4801-2_78

Download citation

Publish with us

Policies and ethics

Navigation