Immune Networks in the Context of Low Dose Ionizing Radiation

  • Conference paper
  • First Online:
Biomarkers of Radiation in the Environment

Abstract

Irradiated tissues engage the immune system on many levels. The general assumption is that the initial damage alerts immune cells through universal danger sensing and signaling pathways that are pro-oxidant, pro-inflammatory at first, before morphing into an anti-oxidant, anti-inflammatory counter response. The perpetuating nature of the inflammatory forces that drive normal tissue toxicity seems to originate in part from cytosolic damaged DNA structures that directly and persistently activate innate immune cells, enforce senescence and feed back to the bone marrow, preferentially driving myelopoiesis and further immune activation. Many of the lasting radiation effects on the immune system resemble those seen in premature aging, and are seen in A-bomb survivor studies and amongst bone marrow transplant recipients. These include enhanced T cell senescence, a shrinking T cell repertoire, less T cell functionality, and overall a more pro-inflammatory immune outlook. The ultimate long-term effects also resemble failed attempts at regeneration with fibrosis, scarring, failure of tissue function, and possibly carcinogenesis and are a de facto multi-organ disease. Whether or not the dose response follows a linear, no-threshold low dose dependency, is less clear but it is reasonable to assume that different thresholds exist for different radiation-induced effects. For example, there is evidence that DNA damage that might be repaired at higher doses, at low doses may leave foci of unrepaired lesions on the balance sheet, which may serve as a nidus for a carcinogenic event or as a chronic low-dose stimulus. So, the potential for longer term, chronic low-grade responses may remain, with the possibility of its later amplification by a secondary event such as an infection or wounding. The status of immune activation at the time of radiation exposure, i.e. acute antigen exposure, immune cell activation, differentiation, metabolic and redox balance, proteasome status, and NFκB/Nrf2 activity will hugely affect the net-outcome of low dose radiation events. Understanding how the immune rheostat might be reprogrammed by low dose radiation, the importance of radiation dose, dose rate, and quality, as well as the impact of collateral signals in the context of danger or non-danger signaling is relevant to many life shortening and carcinogenetic events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aikawa, N. (1996). Cytokine storm in the pathogenesis of multiple organ dysfunction syndrome associated with surgical insults. Journal of Japan Surgical Society, 97771–97777.

    Google Scholar 

  • Antoch, M. P., Wrobel, M., Kuropatwinski, K. K., et al. (2017). Physiological frailty index (PFI): Quantitative in-life estimate of individual biological age in mice. Aging (Albany NY), 9(3), 615–626.

    Article  CAS  Google Scholar 

  • Arora, M., Sun, C. L., Ness, K. K., et al. (2016). Physiologic frailty in nonelderly hematopoietic cell transplantation patients: Results from the bone marrow transplant survivor study. JAMA Oncology, 2(10), 1277–1286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbi, J., Pardoll, D., & Pan, F. (2013). Metabolic control of the Treg/Th17 axis. Immunological Reviews, 252(1), 52–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beach, T. A., Groves, A. M., Johnston, C. J., et al. (2018). Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. International Journal of Radiation Biology, 1–12.

    Google Scholar 

  • Brinkmann, V., & Zychlinsky, A. (2007). Beneficial suicide: Why neutrophils die to make NETs. Nature Reviews. Microbiology, 5(8), 577–582.

    Article  CAS  PubMed  Google Scholar 

  • Brush, J. M., Kim, K., Sayre, J. W., et al. (2009). Imaging of radiation effects on cellular 26S proteasome function in situ. International Journal of Radiation Biology, 85(6), 483–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., & Oppenheim, J. J. (2014). Th17 cells and Tregs: Unlikely allies. Journal of Leukocyte Biology.

    Google Scholar 

  • Chiang, C. S., Hong, J. H., Stalder, A., et al. (1997). Delayed molecular responses to brain irradiation. International Journal of Radiation Biology, 72(1), 45–53.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, C. S., Liu, W. C., Jung, S. M., et al. (2005). Compartmental responses after thoracic irradiation of mice: Strain differences. International Journal of Radiation Oncology, Biology, Physics, 62(3), 862–871.

    Article  PubMed  Google Scholar 

  • Cline, J. M., Dugan, G., Bourland, J. D., et al. (2018). Post-irradiation treatment with a superoxide dismutase mimic, MnTnHex-2-PyP(5+), mitigates radiation injury in the lungs of non-human primates after whole-thorax exposure to ionizing radiation. Antioxidants (Basel, Switzerland), 7(3), 40.

    Google Scholar 

  • Deng, L., Liang, H., Xu, M., et al. (2014). STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity, 41(5), 843–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denkinger, M. D., Leins, H., Schirmbeck, R., et al. (2015). HSC aging and senescent immune remodeling. Trends in Immunology, 36(12), 815–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodson, M., Darley-Usmar, V., & Zhang, J. (2013). Cellular metabolic and autophagic pathways: Traffic control by redox signaling. Free Radical Biology & Medicine, 63207–63221.

    Google Scholar 

  • Elgart, S. R., Bostani, M., Mok, K. C., et al. (2015). Investigation of DNA damage dose-response kinetics after ionizing radiation schemes similar to CT protocols. Radiation Research, 183(6), 701–707.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, C., Garagnani, P., Vitale, G., et al. (2017). Inflammaging and ‘Garb-aging’. Trends in Endocrinology & Metabolism, 28(3), 199–212.

    Article  CAS  Google Scholar 

  • Frank, M. O., & Caceres, B. A. (2015). Inflammaging: A concept analysis. The Journal for Nurse Practitioners, 11(2), 258–261.

    Article  Google Scholar 

  • Fujiwara, S., Suyama, A., Cologne, J. B., et al. (2008). Prevalence of adult-onset multifactorial disease among offspring of atomic bomb survivors. Radiation Research, 170(4), 451–457.

    Article  CAS  PubMed  Google Scholar 

  • Fulop, T., Larbi, A., Dupuis, G., et al. (2018). Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Frontiers in Immunology, 8(1960).

    Google Scholar 

  • Gao, D., Li, T., Li, X.-D., et al. (2015). Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proceedings of the National Academy of Sciences, 112(42), E5699.

    Article  CAS  Google Scholar 

  • Ghandhi, S. A., Turner, H. C., Shuryak, I., et al. (2018). Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One, 13(1), e0191402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grant, G. A., Barlow, J. A., & Leach, K. E. (1976). Modification of survival of gamma irradiated mice by adenosine nucleotides. Strahlentherapie, 152(3), 285–291.

    CAS  PubMed  Google Scholar 

  • Groves, A. M., Johnston, C. J., Williams, J. P., et al. (2018). Role of infiltrating monocytes in the development of radiation-induced pulmonary fibrosis. Radiation Research, 189(3), 300–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding, S. M., Benci, J. L., Irianto, J., et al. (2017). Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature, 548466.

    Google Scholar 

  • Hernandez, L., Terradas, M., Camps, J., et al. (2015). Aging and radiation: Bad companions. Aging Cell, 14(2), 153–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin, P. D., Heath, W. R., & Baxter, A. G. (2007). The clonal selection theory: 50 years since the revolution. Nature Immunology, 8(10), 1019–1026.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J., Chiang, C., Campbell, I. L., et al. (1996). Induction of acute phase gene expression by brain irradiation. International Journal of Radiation Oncology Biology Physics, 33619–33626.

    Google Scholar 

  • Hong, J.-H., Chiang, C.-S., Tsao, C.-Y., et al. (1999). Immediate-acute responses of cytokine gene expression in lung following thoracic irradiation. Proceedings of the American Association for Cancer Research Annual Meeting, 40422.

    Google Scholar 

  • Kajimura, J., Lynch, H. E., Geyer, S., et al. (2017). Radiation- and age-associated changes in peripheral blood dendritic cell populations among aging atomic bomb survivors in Japan. Radiation Research, 189(1), 84–94.

    Article  Google Scholar 

  • Kallman, R. F., & Kohn, H. I. (1958). Life shortening by whole- and partial-body x-irradiation in mice. Science, 128(3319), 301–302.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K., Brush, J. M., Iwamoto, K. S., et al. (2008). EGFRvIII expression in U87 glioblastoma cells alters their proteasome composition, function, and response to irradiation. Molecular Cancer Research, 6(3), 426–434.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K., & McBride, W. H. (2010). Modifying radiation damage. Current Drug Targets, 11(11), 1352–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, A., & Kishimoto, T. (2010). IL-6: Regulator of Treg/Th17 balance. European Journal of Immunology, 40(7), 1830–1835.

    Article  CAS  PubMed  Google Scholar 

  • Kojima, S., Ohshima, Y., Nakatsukasa, H., et al. (2017). Role of ATP as a key signaling molecule mediating radiation-induced biological effects. Dose-Response, 15(1), 1559325817690638.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusunoki, Y., & Hayashi, T. (2008). Long-lasting alterations of the immune system by ionizing radiation exposure: Implications for disease development among atomic bomb survivors. International Journal of Radiation Biology, 84(1), 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Kusunoki, Y., Yamaoka, M., Kubo, Y., et al. (2010). T-cell immunosenescence and inflammatory response in atomic bomb survivors. Radiation Research, 174(6), 870–876.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D. W., Gardner, R., Porter, D. L., et al. (2014). Current concepts in the diagnosis and management of cytokine release syndrome. Blood, 124(2), 188–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, P. Y., Li, Y., Kumagai, Y., et al. (2009). Type I interferon modulates monocyte recruitment and maturation in chronic inflammation. The American Journal of Pathology, 175(5), 2023–2033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnert, B. E., & Iyer, R. (2002). Exposure to low-level chemicals and ionizing radiation: Reactive oxygen species and cellular pathways. Human & Experimental Toxicology, 21(2), 65–69.

    Article  CAS  Google Scholar 

  • Lowe, D., & Raj, K. (2014). Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression. Aging Cell, 13(5), 900–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie, K. J., Carroll, P., Martin, C. A., et al. (2017). cGAS surveillance of micronuclei links genome instability to innate immunity. Nature.

    Google Scholar 

  • Mancuso, M., Pasquali, E., Leonardi, S., et al. (2011). Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo. Oncogene, 30(45), 4601–4608.

    Article  CAS  PubMed  Google Scholar 

  • Marples, B., Wouters, B. G., Collis, S. J., et al. (2004). Low-dose hyper-radiosensitivity: A consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells. Radiation Research, 161(3), 247–255.

    Article  CAS  PubMed  Google Scholar 

  • McBride, W. H., Chiang, C. S., Olson, J. L., et al. (2004). A sense of danger from radiation. Radiation Research, 162(1), 1–19.

    Article  CAS  PubMed  Google Scholar 

  • McBride, W. H., Ganapathy, E., Lee, M. H., et al. (2017). A perspective on the impact of radiation therapy on the immune rheostat. The British Journal of Radiology, 90(1078), 20170272.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald, J. T., Kim, K., Norris, A. J., et al. (2010). Ionizing radiation activates the Nrf2 antioxidant response. Cancer Research, 70(21), 8886–8895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean, A. R., & Michie, C. A. (1995). In vivo estimates of division and death rates of human T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 92(9), 3707–3711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov, R. (2013). Pattern recognition theory and the launch of modern innate immunity. Journal of Immunology, 191(9), 4473–4474.

    Article  CAS  Google Scholar 

  • Menendez, D., Shatz, M., Azzam, K., et al. (2011). The toll-like receptor gene family is integrated into human DNA damage and p53 networks. PLoS Genetics, 7(3), e1001360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, J., Lv, Z., Qiao, X., et al. (2017). The decay of Redox-stress Response Capacity is a substantive characteristic of aging: Revising the redox theory of aging. Redox Biology, 11365–11374.

    Google Scholar 

  • Mole, R. H. (1959). Life shortening by multiple doses of irradiation. Gerontologia, 3159–3160.

    Google Scholar 

  • Mosmann, T. R., & Sad, S. (1996). The expanding universe of T-cell subsets: Th1, Th2 and more. Immunology Today, 17138–17146.

    Google Scholar 

  • Mottram, P. (1933). A reaction in the skin occurring during the latent period following X-radiation. Nature, 132317.

    Google Scholar 

  • Nefic, H., & Handzic, I. (2013). The effect of age, sex, and lifestyle factors on micronucleus frequency in peripheral blood lymphocytes of the Bosnian population. Mutation Research, 753(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Norman, A., Cochran, S., Bass, D., et al. (1984). Effects of age, sex and diagnostic X-rays on chromosome damage. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 46(3), 317–321.

    Article  CAS  Google Scholar 

  • Ohshima, Y., Tsukimoto, M., Harada, H., et al. (2012). Involvement of connexin43 hemichannel in ATP release after gamma-irradiation. Journal of Radiation Research, 53(4), 551–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill, L. A., Golenbock, D., & Bowie, A. G. (2013). The history of Toll-like receptors – redefining innate immunity. Nature Reviews. Immunology, 13(6), 453–460.

    Article  PubMed  CAS  Google Scholar 

  • Pajonk, F., & McBride, W. H. (2001). Ionizing radiation affects 26s proteasome function and associated molecular responses, even at low doses. Radiotherapy and Oncology, 59(2), 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Pervan, M., Iwamoto, K. S., & McBride, W. H. (2005). Proteasome structures affected by ionizing radiation. Molecular Cancer Research, 3(7), 381–390.

    Article  CAS  PubMed  Google Scholar 

  • Pervan, M., Pajonk, F., Sun, J. R., et al. (2001). Molecular pathways that modify tumor radiation response. American Journal of Clinical Oncology, 24(5), 481–485.

    Article  CAS  PubMed  Google Scholar 

  • Pospisil, M., Hofer, M., Znojil, V., et al. (1995). Radioprotection of mouse hemopoiesis by dipyridamole and adenosine monophosphate in fractionated treatment. Radiation Research, 142(1), 16–22.

    Article  CAS  PubMed  Google Scholar 

  • Preston, D. L., Shimizu, Y., Pierce, D. A., et al. (2003). Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiation Research, 160(4), 381–407.

    Article  CAS  PubMed  Google Scholar 

  • Puck, T. T., & Marcus, P. I. (1956). Action of x-rays on mammalian cells. The Journal of Experimental Medicine, 103(5), 653–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purbey, P. K., Scumpia, P. O., Kim, P. J., et al. (2017). Defined sensing mechanisms and signaling pathways contribute to the global inflammatory gene expression output elicited by ionizing radiation. Immunity, 47(3), 421–34 e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratikan, J. A., Micewicz, E. D., **e, M. W., et al. (2015). Radiation takes its Toll. Cancer Letters, 368(2), 238–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockwell, C. E., Zhang, M., Fields, P. E., et al. (2012). Th2 skewing by activation of Nrf2 in CD4(+) T cells. Journal of Immunology, 188(4), 1630–1637.

    Article  CAS  Google Scholar 

  • Rodier, F., Munoz, D. P., Teachenor, R., et al. (2011). DNA-SCARS: Distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. Journal of Cell Science, 124(Pt 1), 68–81.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues-Moreira, S., Moreno, S. G., Ghinatti, G., et al. (2017). Low-dose irradiation promotes persistent oxidative stress and decreases self-renewal in hematopoietic stem cells. Cell Reports, 20(13), 3199–3211.

    Article  CAS  PubMed  Google Scholar 

  • Rothkamm, K., & Lobrich, M. (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5057–5062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin, P., Johnston, C. J., Williams, J. P., et al. (1995). A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. International Journal of Radiation Oncology, Biology, Physics, 33(1), 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Schaue, D., Kachikwu, E. L., & McBride, W. H. (2012a). Cytokines in radiobiological responses: A review. Radiation Research, 178(6), 505–523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaue, D., & McBride, W. H. (2015). Opportunities and challenges of radiotherapy for treating cancer. Nature Reviews. Clinical Oncology, 12(9), 527–540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaue, D., & McBride, W. H. (2012). T lymphocytes and normal tissue responses to radiation. Frontiers in Oncology, 2119.

    Google Scholar 

  • Schaue, D., Micewicz, E. D., Ratikan, J. A., et al. (2015). Radiation and inflammation. Seminars in Radiation Oncology, 25(1), 4–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaue, D., Ratikan, J. A., & Iwamoto, K. S. (2012b). Cellular autofluorescence following ionizing radiation. PLoS One, 7(2), e32062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seong, S. Y., & Matzinger, P. (2004). Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nature Reviews. Immunology, 4(6), 469–478.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, Y., Kodama, K., Nishi, N., et al. (2010). Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ, 340b5349.

    Google Scholar 

  • Shimura, N., & Kojima, S. (2014). Effects of low-dose-gamma rays on the immune system of different animal models of disease. Dose-response: A Publication of International Hormesis Society, 12(3), 429–465.

    Article  CAS  Google Scholar 

  • Shohan, J. (1916). Some theoretical considerations on the present status of roentgen therapy. The Boston Medical and Surgical Journal, 175321–175327.

    Google Scholar 

  • Siddiqui, M. S., Francois, M., Fenech, M. F., et al. (2015). Persistent gammaH2AX: A promising molecular marker of DNA damage and aging. Mutation Research, Reviews in Mutation Research, 7661–7619.

    Google Scholar 

  • Sitkovsky, M., Lukashev, D., Deaglio, S., et al. (2008). Adenosine A2A receptor antagonists: Blockade of adenosinergic effects and T regulatory cells. British Journal of Pharmacology, 153(Suppl), 1S457–1S464.

    Google Scholar 

  • Smith, J. T., Willey, N. J., & Hancock, J. T. (2012). Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biology Letters, 8(4), 594–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, K. A. (2012b). Toward a molecular understanding of adaptive immunity: A chronology – Part II. Frontiers in Immunology, 3364.

    Google Scholar 

  • Smith, K. A. (2012a). Toward a molecular understanding of adaptive immunity: A chronology, part I. Frontiers in Immunology, 3369.

    Google Scholar 

  • Spektor, A., Umbreit, N. T., & Pellman, D. (2017). Cell biology: When your own chromosomes act like foreign DNA. Current Biology, 27(22), R1228–R1R31.

    Article  CAS  PubMed  Google Scholar 

  • Spitz, D. R., & Hauer-Jensen, M. (2014). Ionizing radiation-induced responses: Where free radical chemistry meets redox biology and medicine. Antioxidants & Redox Signaling, 20(9), 1407–1409.

    Article  CAS  Google Scholar 

  • Taliaferro, W. H., Taliaferro, L. G., & Jaroslow, B. N. (1964). In F. Fremont-Smith (Ed.), Radiation and immune mechanism (Monograph series on radiation biology). Academic Press.

    Google Scholar 

  • Travis, E. L., Peters, L. J., McNeill, J., et al. (1985). Effect of dose-rate on total body irradiation: Lethality and pathologic findings. Radiotherapy and Oncology, 4(4), 341–351.

    Article  CAS  PubMed  Google Scholar 

  • Tsukimoto, M., Tamaishi, N., Homma, T., et al. (2010). Low-dose gamma-ray irradiation induces translocation of Nrf2 into nuclear in mouse macrophage RAW264.7 cells. Journal of Radiation Research, 51(3), 349–353.

    Article  CAS  PubMed  Google Scholar 

  • Udroiu, I., Antoccia, A., & Sgura, A. (2017). Long-term genotoxic effects in the hematopoietic system of prenatally X-irradiated mice. International Journal of Radiation Biology, 93(3), 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Vanpouille-Box, C., Formenti, S. C., & Demaria, S. (2017). TREX1 dictates the immune fate of irradiated cancer cells. Oncoimmunology, 6(9), e1339857.

    Article  PubMed  PubMed Central  Google Scholar 

  • Waite, J. C., & Skokos, D. (2012). Th17 response and inflammatory autoimmune diseases. International Journal of Inflammation, 2012819467.

    Google Scholar 

  • Werner, E., Wang, Y., & Doetsch, P. W. (2017). A single exposure to low- or high-LET radiation induces persistent genomic damage in mouse epithelial cells in vitro and in lung tissue. Radiation Research, 188(4), 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Westbrook, A. M., Wei, B., Hacke, K., et al. (2012). The role of tumour necrosis factor-alpha and tumour necrosis factor receptor signalling in inflammation-associated systemic genotoxicity. Mutagenesis, 27(1), 77–86.

    Article  CAS  PubMed  Google Scholar 

  • Williams, J. P., & McBride, W. H. (2011). After the bomb drops: A new look at radiation-induced multiple organ dysfunction syndrome (MODS). International Journal of Radiation Biology, 87(8), 851–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Withers, H. R., & McBride, W. H. (1998). Biologic basis of radiation therapy. In C. A. Perez & L. W. Brady (Eds.), Principles and practiee of radiation oneology (pp. 79–118).

    Google Scholar 

  • Wojda, A., Zietkiewicz, E., & Witt, M. (2007). Effects of age and gender on micronucleus and chromosome nondisjunction frequencies in centenarians and younger subjects. Mutagenesis, 22(3), 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., Wang, H., Ren, J., et al. (2017). cGAS is essential for cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4612–E4E20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuhas, J. M. (1969). The dose response curve for radiation-induced life shortening. Journal of Gerontology, 24(4), 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Zenkov, N. K., Kozhin, P. M., Chechushkov, A. V., et al. (2017). Mazes of Nrf2 regulation. Biochemistry (Moscow), 82(5), 556–564.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dörthe Schaue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schaue, D., Iwamoto, K.S., McBride, W.H. (2022). Immune Networks in the Context of Low Dose Ionizing Radiation. In: Wood, M.D., Mothersill, C.E., Tsakanova, G., Cresswell, T., Woloschak, G.E. (eds) Biomarkers of Radiation in the Environment. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2101-9_6

Download citation

Publish with us

Policies and ethics

Navigation