Development of Terahertz Frequency Quantum Cascade Lasers for the Applications as Local Oscillators

  • Conference paper
  • First Online:
THz for CBRN and Explosives Detection and Diagnosis

Abstract

We report the development of terahertz frequency quantum cascade lasers for applications as local oscillators. A range of active region designs and waveguide structures have been characterised in order to develop the devices for operation at high temperatures, with high output power and low dissipated power. Quantum cascade lasers based on a LO-phonon bound-to-continuum design emitting at 3.5 THz, suitable for the detection of hydroxyl, were fabricated with a double-metal (gold-gold) waveguide structure. These devices operated in continuous-wave up to 94 K, with an output power of 0.4 mW and dissipated power of 1.7 W at 10 K. A new, mechanically robust packaging and waveguide-integration scheme is also presented for operation outside laboratory environments, which further allows integration of quantum cascade lasers with terahertz waveguides, mixers and other system components. This integration scheme yielded a better beam quality, with a divergence of <20°, compared to standard double-metal devices. Its impacts on the device performance, such as operating temperature range, spectral emission, output power and electrical properties, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.tera-mir.org

  2. P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Ind**, T. Taimre, A. D. Rakić, E. H. Linfield, A. G. Davies, Terahertz imaging using quantum cascade lasers – review of systems and applications, J. Phys. D 47, 374008 (2014)

    Google Scholar 

  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtor, A. L. Hutchinson, A. Y. Cho, Quantum Cascade Laser, Science 264, 553–556 (1994)

    Google Scholar 

  4. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, Terahertz semiconductor-heterostructure laser, Nature 417, 156–159 (2002)

    Google Scholar 

  5. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies E.H. Linfield, Terahertz quantum cascade lasers with >1 W output powers, Electron Lett. 50, 309–311 (2014)

    Google Scholar 

  6. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, J. Faist, Quantum cascade lasers operating from 1.2 to 1.6 THz, Appl. Phys. Lett. 91, 131122 (2007)

    Google Scholar 

  7. C. W. Chan, Q. Hu, J. L. Reno, Ground state terahertz quantum cascade lasers, Appl. Phys. Lett. 101, 151108 (2012)

    Google Scholar 

  8. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer, Appl. Phys. Lett. 86, 244104 (2005)

    Google Scholar 

  9. H. W. Hubers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere D. A. Ritchie, E. H. Linfield, Terahertz quantum cascade laser as local oscillator in a heterodyne receiver, Opt Express 13, 5890–5896 (2005)

    Google Scholar 

  10. R. G. Prinn, J. Huang, R. F. Weiss, D. M. Cunnold, P.J. Fraser, P.G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O’Doherty, R.H.J. Wang, L. Porter, B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, Science 292, 1882–1888, (2001)

    Google Scholar 

  11. R. T. Boreiko1, A. L. Betz1, Heterodyne Spectroscopy of the 63 μm O I Line in M42, The Astrophysical J. Lett. 464, L83 (1996)

    Google Scholar 

  12. A. Valavanis, Y. J. Han, N. Brewster, P. Dean, R. Dong, L. Bushnell, M. Oldfield, J. X. Zhu, L. H. Li, A. G. Davies, B. Ellison, E. H. Linfield, Mechanically robust waveguide-integration and beam sha** of terahertz quantum cascade lasers, Electron. Lett. 51, 919–920 (2015)

    Google Scholar 

  13. B. S. Williams, S. Kumar, H. Callebaut, Qing Hu, J. L. Reno, Terahertz quantum-cascade laser at lambda approximate to 100 mu m using metal waveguide for mode confinement, Appl. Phys. Lett. 83, 2124–2126 (2003)

    Google Scholar 

  14. G. Scalari, L. Ajili, J. Faist, H. Beere, E. H. Linfield, David Ritchie, A. G. Davies, Far-infrared (lambda similar or equal to 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K, Appl. Phys. Lett. 82, 3165–3167 (2003)

    Google Scholar 

  15. M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, H. T. Grahn, Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions, Electron. Lett. 45, 1030–1040 (2009)

    Google Scholar 

  16. S. Fathololoumi, E. Dupont, C. W. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling, Opt. Express 20, 3866–3876 (2012)

    Google Scholar 

  17. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, J. Faist, Low-divergence single-mode terahertz quantum cascade laser, Nature Photonics 3, 586–590 (2009)

    Google Scholar 

  18. N. F. Yu, J. Fan, and Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, F. Capasso, Small-divergence semiconductor lasers by plasmonic collimation, Nature Photonics 2, 564–570 (2008)

    Google Scholar 

  19. M. I. Amanti, M. Fischer, C. Walther, G. Scalari, M. Beck, J. Faist, Horn antennas for terahertz quantum cascade lasers, Electron Lett 43, 573–574 (2007)

    Google Scholar 

  20. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides, Opt. Lett. 32, 2840–2842 (2007)

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the EPSRC (UK) ‘COTS’ programme, the ERC grant ‘NOTES’ and ‘TOSCA’, NERC (UK), the European Space Agency, and the CEOI-ST. AGD and EHL also acknowledge support from the Royal Society and the Wolfson Foundation. PD acknowledges support from EPSRC (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this paper

Cite this paper

Han, Y.J. et al. (2017). Development of Terahertz Frequency Quantum Cascade Lasers for the Applications as Local Oscillators. In: Pereira, M., Shulika, O. (eds) THz for CBRN and Explosives Detection and Diagnosis. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1093-8_15

Download citation

Publish with us

Policies and ethics

Navigation