Catalysis in Supercritical Water Gasification of Biomass: Status and Prospects

  • Chapter
  • First Online:
Near-critical and Supercritical Water and Their Applications for Biorefineries

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 2))

  • 1768 Accesses

Abstract

High pressure and temperature demand containment structure of costly alloys for the supercritical water gasification (SCWG) apparatus. The catalyst is of great significance for realizing high gasification efficiency of biomass under milder circumstances in supercritical water (SCW). This chapter gives a comprehensive review on the original work in the area of catalysis in SCWG of biomass. The development status and role of different catalysts including homogeneous and heterogeneous catalysts used in SCWG were discussed. The alkali catalyst is a homogeneous catalyst, which has a key role in the SCWG of model compounds, biomass, organic wastes and coal. As a heterogeneous catalyst, Ni has been widely used in sub or supercritical water gasification due to its low cost and high activity. The crystallite sintering, supports’ breakdown and carbon deposition under SCW conditions will cause deactivation of catalysts. Therefore, the work of the Ni catalysts modification mentioned in this chapter is necessary and of great value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hemmati S, Saboohi Y, Hashemi N. Thermodynamic modeling for hydrogen production from biomass and evaluation of biomass energy technologies. In: Proceedings of the 3rd international congress on biotechniques for air pollution control, Delft, The Netherlands; 2009.

    Google Scholar 

  2. Dincer I. Technical, environmental and exergetic aspects of hydrogen energy systems. Int J Hydrog Energy. 2002;27(3):265–85.

    Article  Google Scholar 

  3. Kruse A, Gawlik A. Biomass conversion in water at 330–410 °C and 30–50 MPa: identification of key compounds for indication different chemical reaction pathways. Ind Eng Chem Res. 2003;42(2):267–79.

    Article  Google Scholar 

  4. Lu YJ, Zhao L, Guo LJ. Technical and economic evaluation of solar hydrogen production by supercritical water gasification of biomass in China. Int J Hydrog Energy. 2011;36:14349–59.

    Article  Google Scholar 

  5. Elliott DC. Catalytic hydrothermal gasification of biomass. Biofuel Bioprod Biorefin. 2008;2:254–65.

    Article  Google Scholar 

  6. Osada M, Sato T, Watanabe M, Shirai M, Arai K. Catalytic gasification of wood biomass in subcritical and supercritical water. Combust Sci Technol. 2006;178(1–3):537–52.

    Article  Google Scholar 

  7. Elliott DC, Hart TR, Neuenschwander GG. Chemical processing in high-pressure aqueous environments. 8. Improved catalysts for hydrothermal gasification. Ind Eng Chem Res. 2006;45(11):3776–81.

    Article  Google Scholar 

  8. Kruse A, Meier D, Rimbrecht P, Schacht M. Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res. 2000;39(12):4842–8.

    Article  Google Scholar 

  9. Sinag A, Kruse A, Rathert J. Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Ind Eng Chem Res. 2004;43(2):502–8.

    Article  Google Scholar 

  10. Kruse A, Sinag A, Schwarzkopf V. Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind Eng Chem Res. 2003;42(15):3516–21.

    Article  Google Scholar 

  11. Gadhe JB, Gupta RB. Hydrogen production by methanol reforming in supercritical water: suppression of methane formation. Ind Eng Chem Res. 2005;44(13):4577–85.

    Article  Google Scholar 

  12. Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M. Hydrothermal gasification of biomass and organic wastes. J Supercrit Fluid. 2000;17(2):145–53.

    Article  Google Scholar 

  13. Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. Int J Hydrog Energy. 2003;28(1):55–64.

    Article  Google Scholar 

  14. Guo S, Guo L, Cao C, Yin J, Lu Y, Zhang X. Hydrogen production from glycerol by supercritical water gasification in a continuous flow tubular reactor. Int J Hydrog Energy. 2012;37(7):5559–68.

    Article  Google Scholar 

  15. Guo Y, Wang S, Wang Y, Zhang J, Xu D, Gong Y. Gasification of two and three-components mixture in supercritical water: influence of NaOH and initial reactants of acetic acid and phenol. Int J Hydrog Energy. 2012;37(3):2278–86.

    Article  Google Scholar 

  16. Yanik J, Ebale S, Kruse A, Saglam M, Yuksel M. Biomass gasification in supercritical water: II. Effect of catalyst. Int J Hydrog Energy. 2008;33(17):4520–6.

    Article  Google Scholar 

  17. Kruse A, Krupka A, Schwarzkopf V, Gamard C, Henningsen T. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 1. Comparison of different feedstocks. Ind Eng Chem Res. 2005;44(9):3013–20.

    Article  Google Scholar 

  18. Watanabe M, Inomata H, Osada M, Sato T, Adschiri T, Arai K. Catalytic effects of NaOH and ZrO2 for partial oxidative gasification of n-hexadecane and lignin in supercritical water. Fuel. 2003;82(5):545–52.

    Article  Google Scholar 

  19. Jarana MBG, Saanchez-Oneto J, Portela JR, Sanz EN, de la Ossa EJM. Supercritical water gasification of industrial organic wastes. J Supercrit Fluid. 2008;46(3):329–34.

    Article  Google Scholar 

  20. Nakhla G, Youssef EA, Elbeshbishy E, Hafez H, Charpentier P. Sequential supercritical water gasification and partial oxidation of hog manure. Int J Hydrog Energy. 2010;35(21):11756–67.

    Article  Google Scholar 

  21. Yan B, Wei CH, Hu CS, **e C, Wu JZ. Hydrogen generation from polyvinyl alcohol-contaminated wastewater by a process of supercritical water gasification. J Environ Sci China. 2007;19(12):1424–9.

    Article  Google Scholar 

  22. Zhai Y, Wang C, Chen H, Li C, Zeng G, Pang D, Lu P. Digested sewage sludge gasification in supercritical water. Waste Manag Res. 2013;31(4):393–400.

    Article  Google Scholar 

  23. Chen Y, Guo L, Cao W, ** H, Guo S, Zhang X. Hydrogen production by sewage sludge gasification in supercritical water with a fluidized bed reactor. Int J Hydrog Energy. 2013;38(29):12991–9.

    Article  Google Scholar 

  24. Xu C, Donald J. Upgrading peat to gas and liquid fuels in supercritical water with catalysts. Fuel. 2012;102:16–25.

    Article  Google Scholar 

  25. Guo LJ, Li YL, Zhang XM, ** H, Lu YJ. Hydrogen production from coal gasification in supercritical water with a continuous flowing system. Int J Hydrog Energy. 2010;35(7):3036–45.

    Article  Google Scholar 

  26. ** H, Lu YJ, Liao B, Guo LJ, Zhang XM. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. Int J Hydrog Energy. 2010;35(13):7151–60.

    Article  Google Scholar 

  27. Azadi P, Khodadadi AA, Mortazavi Y, Farnood R. Hydrothermal gasification of glucose using Raney nickel and homogeneous organometallic catalysts. Fuel Process Technol. 2009;90:145–51.

    Article  Google Scholar 

  28. Lee IG, Ihm SK. Catalytic gasification of glucose over Ni/Activated Charcoal in supercritical water. Ind Eng Chem. 2009;48:1435–42.

    Article  Google Scholar 

  29. Xu X, Matsumura Y, Stenberg J, Antal MJ. Carbon-catalyzed gasification of organic feedstocks in supercritical water. Ind Eng Chem. 1996;35:2522–30.

    Article  Google Scholar 

  30. Xu X, Antal MJ. Gasification of sewage sludge and other biomass for hydrogen production in supercritical water. Environ Prog. 1998;17:215–20.

    Article  Google Scholar 

  31. Antal JM, Allen SG, Schulman D, Xu X, Divilio RJ. Biomass gasification in supercritical water. Ind Eng Chem Res. 2000;39(11):4044–53.

    Google Scholar 

  32. Zhang R, Jiang W, Cheng L, Sun B, Sun D, Bi J. Hydrogen production from lignite via supercritical water in flow-type reactor. Int J Hydrog Energy. 2010;35:11810–5.

    Article  Google Scholar 

  33. Watanabe M, Inomata H, Arai K. Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass Bioenergy. 2002;22:405–10.

    Article  Google Scholar 

  34. Hao XH, Guo LJ, Zhang XM, Guan Y. Hydrogen production from catalytic gasification of cellulose in supercritical water. Chem Eng J. 2005;110:57–65.

    Article  Google Scholar 

  35. Park KC, Tomiyasu H. Gasification reaction of organic compounds catalyzed by RuO2 in supercritical water. Chem Commun. 2003;6:694–5.

    Article  Google Scholar 

  36. Tomoo Y, Tomonori M, Ki CP, Yasuhiko F, Hiroshi T. Ruthenium(IV) dioxide-catalyzed reductive gasification of intractable biomass including cellulose, heterocyclic compounds, and sludge in supercritical water. J Supercrit Fluid. 2009;51:43–9.

    Article  Google Scholar 

  37. Onwudili JA. Williams PT (2013) Hydrogen and methane selectivity during alkaline supercritical water gasification of biomass with ruthenium-alumina catalyst. Appl Catal B Environ. 2013;132–133:70–9.

    Article  Google Scholar 

  38. Chakinala AG, Chinthaginjala JK, Seshan K, van Swaaij WPM, Kersten SRA, Brilman DWF. Catalyst screening for the hydrothermal gasification of aqueous phase of bio-oil. Catal Today. 2012;195:83–92.

    Article  Google Scholar 

  39. Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M. Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci. 2009;2:535–41.

    Article  Google Scholar 

  40. Guan QQ, Wei CH, Savage PE. Hydrothermal gasification of Nannochloropsis sp. with Ru/C. Energy Fuels. 2012;26:4575–82.

    Article  Google Scholar 

  41. Youssef EA, Nakhla G, Charpentier PA. Oleic acid gasification over supported metal catalysts in supercritical water: hydrogen production and product distribution. Int J Hydrog Energy. 2011;36:4830–42.

    Article  Google Scholar 

  42. Dolan R, Yin SD, Tan ZC. Effects of headspace fraction and aqueous alkalinity on subcritical hydrothermal gasification of cellulose. Int J Hydrog Energy. 2010;35:6600–10.

    Article  Google Scholar 

  43. May A, Salvadó J, Torras C, Montané D. Catalytic gasification of glycerol in supercritical water. Chem Eng J. 2010;160:751–9.

    Article  Google Scholar 

  44. Hashaikeh R, Fang Z, Butler IS, Kozinski JA. Sequential hydrothermal gasification of biomass to hydrogen. Proc Combust Inst. 2005;30:2231–7.

    Article  Google Scholar 

  45. Yamaguchi A, Hiyoshi N, Sato O. Gasification of organosolv-lignin over charcoal supported noble metal salt catalysts in supercritical water. Top Catal. 2012;55(11–13):889–96.

    Article  Google Scholar 

  46. Osada M, Yamaguchi A, Hiyoshi N. Gasification of sugarcane bagasse over supported ruthenium catalysts in supercritical water. Energy Fuels. 2012;26(6):3179–86.

    Article  Google Scholar 

  47. Sato T, Inda K, Itoh N. Gasification of bean curd refuse with carbon supported noble metal catalysts in supercritical water. Biomass Bioenergy. 2011;35(3):1245–51.

    Article  Google Scholar 

  48. Yamaguchi A, Hiyoshi N, Sato O. Lignin gasification over supported ruthenium trivalent salts in supercritical water. Energy Fuels. 2008;22(3):1485–92.

    Article  Google Scholar 

  49. Yamaguchi A, Hiyoshi N, Sato O. EXAFS study on structural change of charcoal-supported ruthenium catalysts during lignin gasification in supercritical water. Catal Lett. 2008;122(1–2):188–95.

    Article  Google Scholar 

  50. Osada M, Hiyoshi N, Sato O. Reaction pathway for catalytic gasification of lignin in presence of sulfur in supercritical water. Energy Fuels. 2007;21(4):1854–8.

    Article  Google Scholar 

  51. Osada M, Hiyoshi N, Sato O. Effect of sulfur on catalytic gasification of lignin in supercritical water. Energy Fuels. 2007;21(3):1400–5.

    Article  Google Scholar 

  52. Osada M, Sato O, Arai K. Stability of supported ruthenium catalysts for lignin gasification in supercritical water. Energy Fuels. 2006;20(6):2337–43.

    Article  Google Scholar 

  53. Osada M, Sato O, Watanabe M. Water density effect on lignin gasification over supported noble metal catalysts in supercritical water. Energy Fuels. 2006;20(3):930–5.

    Article  Google Scholar 

  54. Osada M, Sato T, Watanabe M, Adschiri T, Arai K. Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuels. 2004;18(2):327–33.

    Article  Google Scholar 

  55. Azadi P, Farnood R. Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes. Int J Hydrog Energy. 2011;36:9529–41.

    Article  Google Scholar 

  56. Modell M. Gasification and liquefaction of forest products in supercritical water. In: Overend RP, Milne TA, Mudge LK, editors. Fundamentals of thermochemical biomass conversion. London: Elsevier Applied Science Publishers; 1985. p. 937–50.

    Google Scholar 

  57. Elliott DC, Sealock LJ, Baker EG. Chemical-processing in high-pressure aqueous environments.2. Development of catalysts for gasification. Ind Eng Chem Res. 1993;32(8):1542–8.

    Article  Google Scholar 

  58. Minowa T, Ogi T. Hydrogen production from cellulose using a reduced nickel catalyst. Catal Today. 1998;45(4):411–6.

    Article  Google Scholar 

  59. Yoshida T, Oshima Y, Matsumura Y. Gasification of biomass model compounds and real biomass in supercritical water. Biomass Bioenergy. 2003;26(1):71–8.

    Google Scholar 

  60. Sato T, Furusawa T, Ishiyama Y, Sugito H, Miura Y, Sato M, Suzuki N, Itoh N. Effect of water density on the gasification of lignin with magnesium oxide supported nickel catalysts in supercritical water. Ind Eng Chem Res. 2006;45(2):615–22.

    Article  Google Scholar 

  61. Furusawa T, Sato T, Sugito H, Miura Y, Ishiyama Y, Sato M, Itoh N, Suzuki N. Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. Int J Hydrog Energy. 2007;32(6):699–704.

    Article  Google Scholar 

  62. Zhang L, Champagne P, Xu C. Screening of supported transition metal catalysts for hydrogen production from glucose via catalytic supercritical water gasification. Int J Hydrog Energy. 2011;36(16):9591–601.

    Article  Google Scholar 

  63. Azadi P, Khan S, Strobel F, Azadi F, Farnood R. Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B Environ. 2012;117–118:330–8.

    Article  Google Scholar 

  64. Dileo GJ, Neff ME, Kim S, Savage PE. Supercritical water gasification of phenol and glycine as models for plant and protein biomass. Energy Fuels. 2008;22(2):871–7.

    Article  Google Scholar 

  65. Dileo GJ, Neff ME, Savage PE. Gasification of guaiacol and phenol in supercritical water. Energy Fuels. 2007;21(4):2340–5.

    Article  Google Scholar 

  66. DiLeo GJ, Savage PE. Catalysis during methanol gasification in supercritical water. J Supercrit Fluid. 2006;39(2):228–32.

    Article  Google Scholar 

  67. Youssef EA, Chowdhury MBI, Nakhla G, Charpentier P. Effect of nickel loading on hydrogen production and chemical oxygen demand (COD) destruction from glucose oxidation and gasification in supercritical water. Int J Hydrog Energy. 2010;35(10):5034–42.

    Article  Google Scholar 

  68. Taylor AD, Dileo GJ, Sun K. Hydrogen production and performance of nickel based catalysts synthesized using supercritical fluids for the gasification of biomass. Appl Catal B-Environ. 2009;93(1–2):126–33.

    Article  Google Scholar 

  69. Yan B, Wu J, **e C, He F, Wei C. Supercritical water gasification with Ni/ZrO2 catalyst for hydrogen production from model wastewater of polyethylene glycol. J Supercrit Fluids. 2009;50(2):155–61.

    Article  Google Scholar 

  70. Elliott DC, Sealock LJ, Baker EG. Chemical processing in high-pressure aqueous environments. 3. Batch reactor process development experiments for organics destruction. Ind Eng Chem Res. 1994;33:558–65.

    Article  Google Scholar 

  71. Elliott DC, Phelps MR, Sealock Jr LJ, Baker EG. Chemical processing in high-pressure aqueous environments. 4. Continuous-flow reactor process development experiments for organic destruction. Ind Eng Chem Res. 1994;33:566–74.

    Article  Google Scholar 

  72. Elliott DC, Neuenschwander GG, Phelps MR, Hart TR, Zacher AH, Silva LJ. Chemical processing in high-pressure environments. 6. Demonstration of catalytic gasification for chemical manufacturing wastewater cleanup in industrial plants. Ind Eng Chem Res. 1999;38:879–83.

    Article  Google Scholar 

  73. Minowa T, Fang Z, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluid. 1998;13(2):253–9.

    Article  Google Scholar 

  74. Minowa T, Inoue S. Hydrogen production from biomass by catalytic gasification in hot compressed water. Renew Energy. 1999;16:1114–7.

    Article  Google Scholar 

  75. Yoshida T, Matsumura Y. Gasification of cellulose, xylan, and lignin mixtures in supercritical water. Ind Eng Chem Res. 2001;40:5469–74.

    Article  Google Scholar 

  76. Resende FLP, Savage PE. Effect of metals on supercritical water gasification of cellulose and lignin. Ind Eng Chem Res. 2010;49(6):2694–700.

    Article  Google Scholar 

  77. Azadi P, Syed KM, Farnood R. Catalytic gasification of biomass model compound in near-critical water. Appl Catal A Gen. 2009;358:65–72.

    Article  Google Scholar 

  78. Fang Z, Minowa T, Fang C, Smith Jr RL, Inomata H, Kozinski JA. Catalytic hydrothermal gasification of cellulose and glucose. Int J Hydrog Energy. 2008;33:981–90.

    Article  Google Scholar 

  79. Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA. Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res. 2010;49(3):1113–22.

    Article  Google Scholar 

  80. Wang S, Lu GQM. CO2 reforming of methane on Ni catalysts: effects of the support phase and preparation technique. Appl Catal B Environ. 1998;16(3):267–77.

    Article  Google Scholar 

  81. Natesakhawat S, Watson RB, Wang X, Ozkan US. Deactivation characteristics of lanthanide promoted sol-gel Ni/Al2O3 catalysts in propane steam reforming. J Catal. 2005;234(2):496–508.

    Article  Google Scholar 

  82. Lu YJ, Li S, Guo LJ, Zhang XM. Hydrogen production by biomass gasification in supercritical water over Ni/γAl2O3 and Ni/CeO2-γAl2O3. Int J Hydrog Energy. 2010;35:7161–8.

    Article  Google Scholar 

  83. Vizcaino A, Arena P, Baronetti G, Carrero A, Calles J, Laborde M, Amadeo N. Ethanol steam reforming on Ni/Al2O3 catalysts: effect of mg addition. Int J Hydrog Energy. 2008;33(13):3489–92.

    Article  Google Scholar 

  84. Gac W. Acid–base properties of Ni–MgO–Al2O3 materials. Appl Surf Sci. 2011;257(7):2875–80.

    Article  Google Scholar 

  85. Huber GW, Shabaker JW, Dumesic JA. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science. 2003;300(5628):2075–7.

    Article  Google Scholar 

  86. Li S, Lu YJ, Guo LJ, Zhang XM. Hydrogen production from biomass gasification in supercritical water with bimetallic Ni-M/Al2O3 catalysts (M = Cu, Co and Sn). Int J Hydrog Energy. 2011;36:14391–400.

    Article  Google Scholar 

  87. Lu YJ, Li S, Guo LJ. Hydrogen production by supercritical water gasification of glucose with Ni/CeO2/Al2O3: effect of Ce loading. Fuel. 2013;103:193–9.

    Article  Google Scholar 

  88. Laosiripojana N, Sangtongkitcharoen W, Assabumrungrat S. Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: improvement of resistance toward carbon formation by the redox property of do** CeO2. Fuel. 2006;85:323–32.

    Article  Google Scholar 

  89. Kumar P, Sun Y, Idem RO. Comparative study of Ni-based mixed oxide catalyst for carbon dioxide reforming of methane. Energy Fuels. 2008;22:3575–82.

    Article  Google Scholar 

  90. Tomishige K, Kimura T, Nishikawa J, Miyazawa T, Kunimori K. Promoting effect of the interaction between Ni and CeO2 on steam gasification of biomass. Catal Commun. 2007;8:1074–9.

    Article  Google Scholar 

  91. Li S, Guo LJ, Zhu C, Lu YJ. Co-precipitated Ni-Mg-Al catalysts for hydrogen production by supercritical water gasification of glucose. Int J Hydrog Energy. 2013;38(23):9688–700.

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the financial supports from the National Natural Science Foundation of China (No. 5132206) and the National Key Project for Basic Research of China (No. 2012CB215303). We will also thank Drs. Yunan Chen and Liya Zhu for their contributions to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjun Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, Y., Li, S., Guo, L. (2014). Catalysis in Supercritical Water Gasification of Biomass: Status and Prospects. In: Fang, Z., Xu, C. (eds) Near-critical and Supercritical Water and Their Applications for Biorefineries. Biofuels and Biorefineries, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8923-3_13

Download citation

Publish with us

Policies and ethics

Navigation