Time-Resolved Macromolecular Crystallography in Practice at BioCARS, Advanced Photon Source: From Data Collection to Structures of Intermediates

  • Conference paper
  • First Online:
The Future of Dynamic Structural Science

Abstract

Time-resolved macromolecular crystallography is one of several “kinetic crystallography” methods (Bourgeois D, Royant A, Curr Opin Struct Biol 15:538–547, 2005; Bourgeois D, Weik M, Crystallogr Rev 15:87–118, 2009). In kinetic crystallography experiments, genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining structures of intermediate states. In time-resolved experiments in particular, short and intense X-ray pulses are used to probe intermediates in real time and at room temperature, in reactions that are initiated synchronously and rapidly in the crystal. We provide here an overview of time-resolved crystallography as implemented today at the BioCARS beamline 14-ID at the Advanced Photon Source (Graber T et al., J Synchrotron Radiat 18:658–670, 2011), with an overview of future directions and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arzt S, Campbell JW, Harding MM, Hao Q, Helliwell JR (1999) LSCALE – the new normalization, scaling and absorption correction program in the Daresbury Laue software suite. J Appl Crystallogr 32:554–562

    Article  CAS  Google Scholar 

  2. Bourgeois D, Royant A (2005) Advances in kinetic protein crystallography. Curr Opin Struct Biol 15:538–547

    Article  CAS  Google Scholar 

  3. Bourgeois D, Weik M (2009) Kinetic protein crystallography: a tool to watch proteins in action. Crystallogr Rev 15:87–118

    Article  CAS  Google Scholar 

  4. Bourgeois D, Wagner U, Wulff M (2000) Towards automated Laue data processing: application to the choice of optimal X-ray spectrum. Acta Crystallogr D56:973–985

    CAS  Google Scholar 

  5. Campbell JW (1995) LAUEGEN, an X-windows-based program for the processing of Laue diffraction data. J Appl Crystallogr 28:228–236

    Article  CAS  Google Scholar 

  6. Corrie JET, Katayama Y, Reid GP, Anson M, Trentham DR, Sweet RM, Moffat K (1992) The development and application of photosensitive caged compounds to aid time-resolved structure determination of macromolecules [and discussion]. Philos Trans R Soc Lond Ser A 340:233–244

    Article  CAS  Google Scholar 

  7. Graber T, Anderson S, Brewer H, Chen Y-S, Cho HS, Dashdorj N, Henning RW, Kosheleva I, Macha G, Meron M et al (2011) BioCARS: a synchrotron resource for time-resolved X-ray science. J Synchrotron Radiat 18:658–670

    Article  CAS  Google Scholar 

  8. Haldrup K, Harlang T, Christensen M, Dohn A, van Driel TB, Kjær KS, Harrit N, Vibenholt J, Guerin L, Wulff M et al (2011) Bond shortening (1.4 Å) in the singlet and triplet excited states of [Ir2(dimen)4]2+ in solution determined by time-resolved X-ray scattering. Inorg Chem 50:9329–9336

    Article  CAS  Google Scholar 

  9. Haldrup K, Vankó G, Gawelda W, Galler A, Doumy G, March AM, Kanter EP, Bordage A, Dohn A, van Driel TB et al (2012) Guest–host Interactions investigated by time-resolved X-ray spectroscopies and scattering at MHz rates: solvation dynamics and photoinduced spin transition in aqueous Fe(bipy)32+. J Phys Chem A 116:9878–9887

    Article  CAS  Google Scholar 

  10. Ihee H, Rajagopal S, Srajer V, Pahl R, Anderson S, Schmidt M, Schotte F, Anfinrud PA, Wulff M, Moffat K (2005) Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Proc Natl Acad Sci U S A 102:7145–7150

    Article  CAS  Google Scholar 

  11. Jung YO, Lee JH, Kim J, Schmidt M, Moffat K, Šrajer V, Ihee H (2013) Volume-conserving trans–cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography. Nat Chem 5:212–220

    Article  CAS  Google Scholar 

  12. Knapp JE, Pahl R, Srajer V, Royer WE (2006) Allosteric action in real time: time-resolved crystallographic studies of a cooperative dimeric hemoglobin. Proc Natl Acad Sci U S A 103:7649–7654

    Article  CAS  Google Scholar 

  13. Kostov KS, Moffat K (2011) Cluster analysis of time-dependent crystallographic data: direct identification of time-independent structural intermediates. Biophys J 100:440–449

    Article  CAS  Google Scholar 

  14. Rajagopal S, Schmidt M, Anderson S, Ihee H, Moffat K (2004) Analysis of experimental time-resolved crystallographic data by singular value decomposition. Acta Crystallogr D60:860–871

    CAS  Google Scholar 

  15. Rajagopal S, Kostov KS, Moffat K (2004) Analytical trap**: extraction of time-independent structures from time-dependent crystallographic data. J Struct Biol 147:211–222

    Article  CAS  Google Scholar 

  16. Rajagopal S, Anderson S, Srajer V, Schmidt M, Pahl R, Moffat K (2005) A structural pathway for signaling in the E46Q mutant of photoactive yellow protein. Structure 13:55–63

    Article  CAS  Google Scholar 

  17. Ren Z, Bourgeois D, Helliwell JR, Moffat K, Šrajer V, Stoddard BL (1999) Laue crystallography: coming of age. J Synchrotron Radiat 6:891–917

    Article  CAS  Google Scholar 

  18. Ren Z, Chan PWY, Moffat K, Pai EF, Royer WE, Šrajer V, Yang X (2013) Resolution of structural heterogeneity in dynamic crystallography. Acta Crystallogr D69:946–959

    Google Scholar 

  19. Schlichting I, Goody RS (1997) Triggering methods in crystallographic enzyme kinetics. Meth Enzymol 277:467–490

    Article  CAS  Google Scholar 

  20. Schmidt M (2008) Structure based kinetics by time-resolved X-ray crystallography. In: Braun M, Gilch P, Zinth W (eds) Ultrashort laser pulses in biology and medicine. Springer, Berlin/Heidelberg, pp 201–241

    Chapter  Google Scholar 

  21. Schmidt M (2013) Mix and inject: reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv Condens Mat Phys. Article ID 167276

    Google Scholar 

  22. Schmidt M, Rajagopal S, Ren Z, Moffat K (2003) Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. Biophys J 84:2112–2129

    Article  CAS  Google Scholar 

  23. Schmidt M, Pahl R, Srajer V, Anderson S, Ren Z, Ihee H, Rajagopal S, Moffat K (2004) Protein kinetics: structures of intermediates and reaction mechanism from time-resolved X-ray data. Proc Natl Acad Sci U S A 101:4799–4804

    Article  CAS  Google Scholar 

  24. Schmidt M, Ihee H, Pahl R, Srajer V (2005) Protein-ligand interaction probed by time-resolved crystallography. Methods Mol Biol 305:115–154

    CAS  Google Scholar 

  25. Schmidt M, Nienhaus K, Pahl R, Krasselt A, Anderson S, Parak F, Nienhaus GU, Srajer V (2005) Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO. Proc Natl Acad Sci U S A 102:11704–11709

    Article  CAS  Google Scholar 

  26. Schmidt M, Graber T, Henning R, Srajer V (2010) Five-dimensional crystallography. Acta Crystallogr A66:198–206

    Article  Google Scholar 

  27. Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN, Wulff M, Anfinrud PA (2003) Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300:1944–1947

    Article  CAS  Google Scholar 

  28. Schotte F, Cho HS, Kaila VRI, Kamikubo H, Dashdorj N, Henry ER, Graber TJ, Henning R, Wulff M, Hummer G et al (2012) Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Proc Natl Acad Sci U S A 109:19256–19261

    Article  CAS  Google Scholar 

  29. Srajer V, Teng T, Ursby T, Pradervand C, Ren Z, Adachi S, Schildkamp W, Bourgeois D, Wulff M, Moffat K (1996) Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography. Science 274:1726–1729

    Article  CAS  Google Scholar 

  30. Srajer V, Crosson S, Schmidt M, Key J, Schotte F, Anderson S, Perman B, Ren Z, Teng TY, Bourgeois D et al (2000) Extraction of accurate structure-factor amplitudes from Laue data: wavelength normalization with wiggler and undulator X-ray sources. J Synchrotron Radiat 7:236–244

    Article  CAS  Google Scholar 

  31. Srajer V, Ren Z, Teng TY, Schmidt M, Ursby T, Bourgeois D, Pradervand C, Schildkamp W, Wulff M, Moffat K (2001) Protein conformational relaxation and ligand migration in myoglobin: a nanosecond to millisecond molecular movie from time-resolved Laue X-ray diffraction. Biochemistry 40:13802–13815

    Article  CAS  Google Scholar 

  32. Terwilliger TC, Berendzen J (1995) Difference refinement: obtaining differences between two related structures. Acta Crystallogr D51:609–618

    CAS  Google Scholar 

  33. Ursby T, Bourgeois D (1997) Improved estimation of structure-factor difference amplitudes from poorly accurate data. Acta Crystallogr A53:564–575

    Article  CAS  Google Scholar 

  34. Wöhri AB, Katona G, Johansson LC, Fritz E, Malmerberg E, Andersson M, Vincent J, Eklund M, Cammarata M, Wulff M et al (2010) Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction. Science 328:630–633

    Article  Google Scholar 

  35. Yang X, Ren Z, Kuk J, Moffat K (2011) Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome. Nature 479:428–432

    Article  CAS  Google Scholar 

  36. Zhao Y, Schmidt M (2009) New software for the singular value decomposition of time-resolved crystallographic data. J Appl Crystallogr 42:734–740

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vukica Šrajer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Šrajer, V. (2014). Time-Resolved Macromolecular Crystallography in Practice at BioCARS, Advanced Photon Source: From Data Collection to Structures of Intermediates. In: Howard, J., Sparkes, H., Raithby, P., Churakov, A. (eds) The Future of Dynamic Structural Science. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8550-1_17

Download citation

Publish with us

Policies and ethics

Navigation