Investigations of Bacillus thuringiensis Cry1 toxin receptor structure and function

  • Chapter
Entomopathogenic Bacteria: from Laboratory to Field Application

Abstract

Bacillus thuringiensis Cry1 proteins are highly toxic to some species of lepidopteran larvae. Cry proteins act on the brush border membrane through a multi-step process. The process includes Cry1 crystal solubilisation, activation by proteinases, attachment to receptors, then membrane insertion and permeation followed by cell lysis. Toxin binding to receptors is a pivotal event necessary for insect mortality. We review research that identified aminopeptidase N and cadherin-like proteins as Cry1 toxin receptors. Since enteric toxins recognise glycolipid receptors, we examined Manduca sexta brush border lipids as potential toxin receptors. M. sexta brush border membrane glycolipids lipids bound Cry1Ac toxin selectively on thin-layer chromatograph overlays. Because pore formation is necessary for toxicity, a functional receptor should catalyse Cry1-induced pore formation. Various data support aminopeptidases, cadherin-like proteins and glycolipids as “true” Cry1 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adang MJ, Paskewitz SM, Garczynski SF & Sangadala S (1995) Identification and functional characterization of the Bacillus thuringiensis CryIA(c) 5-endotoxin receptor in Manduca sexta, p. 320–329. In: Marshall Clark J (ed.), Molecular action of insecticides on ion channels, American Chemical Society, New York.

    Chapter  Google Scholar 

  2. Burton SL, Ellar DJ, Li J & Derbyshire DJ (1999) N-Acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. J. Mol. Biol. 287, 1011–1022

    Article  PubMed  CAS  Google Scholar 

  3. Carroll J & Ellar DJ (1993) An analysis of Bacillus thuringiensis 8-endotoxin action on insect-midgut-membrane permeability using a light-scattering assay. Eur. J. Biochem. 214, 771–778

    Article  PubMed  CAS  Google Scholar 

  4. Carroll J & Ellar DJ (1997) Analysis of the large aqueous pores produced by a Bacillus thuringiensis protein insecticide in Manduca sexta midgut-brush-bordermembrane vesicles. Eur. J. Biochem. 245, 797–804

    Article  PubMed  CAS  Google Scholar 

  5. Carroll J, Wolfersberger MG & Ellar DJ (1997) The Bacillus thuringiensis CrylAc toxin-induced permeability change in Manduca sexta midgut brush border membrane vesicles proceeds by more than one mechanism. J. Cell. Sci. 110, 3099–3104

    PubMed  CAS  Google Scholar 

  6. Cooper MA, Carroll J, Travis ER, Williams DH & Ellar DJ (1998) Bacillus thuringiensis CrylAc toxin interaction with Manduca sexta aminopeptidase N in a model membrane environment. Biochem. J. 333, 677–683

    Google Scholar 

  7. Cowles EA, Yunovitz H, Charles J-F & Gill SS (1995) Comparison of toxin overlay and solid-phase binding assays to identify diverse CryIA(c) toxin-binding proteins in Heliothis virescens midgut. Appl. Environ. Microbiol. 61, 2738–2744

    PubMed  CAS  Google Scholar 

  8. de Maagd RA, Bakker PL, Masson L et al. (1999) Domain III of the Bacillus thuringiensis delta-endotoxin Cry lAc is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N. Molec. Microbiol. 31, 463–471

    Article  Google Scholar 

  9. de Maagd RA, Van der Klei H, Bakker PL, Stiekema WJ & Bosch D (1996) Different domains of Bacillus thuringiensis 6-endotoxins can bind to insect midgut membrane proteins on ligand blots. Appl. Environ. Microbiol. 62, 2753–2757

    PubMed  Google Scholar 

  10. Dennis R D, Weigandt H, Haustein D, Knowles BH & Ellar DJ (1986) Thin layer chromatography overlay technique in the analysis of the binding of the solubilized protoxin of Bacillus thuringiensis var. kurstaki to an insect glycosphingolipid of known structure. Biomed. Chromatog. 1, 31–37

    Article  CAS  Google Scholar 

  11. Denolf P, Hendrickx K, Van Damme J et al. (1997) Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Eur. J. Biochem. 248, 748–761

    Article  PubMed  CAS  Google Scholar 

  12. Denolf P, Jansens S, Peferoen M et al. (1993) Two different Bacillus thuringiensis delta-endotoxin receptors in the midgut brush border membrane of the european corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae). Appl. Environ. Microbiol. 59, 1828–1837

    PubMed  CAS  Google Scholar 

  13. Ellar DJ (1994) Structure and mechanism of action of Bacillus thuringiensis endotoxins and their receptors. Biocontrol Science Tech. 4, 445–447

    Article  Google Scholar 

  14. English L, Readdy TL & Bastian AE (1991) Delta-endotoxin-induced leakage of 86Rb+-K+ and H2O from phospholipid vesicles is catalyzed by reconstituted midgut membrane. Insect Biochem. 21, 177–184

    Article  CAS  Google Scholar 

  15. English L & Slatin SL (1992) Mode of action of delta-endotoxins from Bacillus thuringiensis: A comparison with other bacterial toxins. Insect Biochem. Molec. Biol. 22, 1–7

    CAS  Google Scholar 

  16. English L, Walters F, Von Tersch MA & Slatin S (1995) Modulation of S-endotoxin ion channels, p. 302–307. In: Marshall Clark J (ed.), Molecular action of insecticides on ion channels, American Chemical Society: New York.

    Chapter  Google Scholar 

  17. Escriche B, De Decker N, Van Rie J, Jansens S & Van Kerkhove E (1998) Changes in permeability of brush border membrane vesicles from Spodoptera littoralis midgut induced by insecticidal crystal proteins from Bacillus thuringiensis. Appl. Environ. Microbiol. 64, 1563–1565

    PubMed  CAS  Google Scholar 

  18. Ferguson MAJ (1992) Chemical and enzymic analysis of glycosyl-phosphatidylinositol anchors, p. 191–230. In: Hooper NM & Turner Al (ed.), Lipid modification of proteins: A practical approach, IRL Press: New York.

    Google Scholar 

  19. Ferré J, Real MD, Van Rie J, Jansens S & Peferoen M (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88, 5119–5123

    Article  PubMed  Google Scholar 

  20. Fishman PH, Pacuszka T & Orlandi PA (1993). Gangliosides as receptors for bacterial enterotoxins. Adv. Lipid Res. 25, 165–187

    PubMed  CAS  Google Scholar 

  21. Flores H, Soberon X, Sanchez J & Bravo A (1997) Isolated domain II and III from the Bacillus thuringiensis Cry1Ab delta-endotoxin binds to lepidopteran midgut membranes. FEBS Lett. 414, 313–318

    Article  PubMed  CAS  Google Scholar 

  22. Francis BR & Bulla LA (1997) Further characterization of BT-R1, the cadherin-like receptor for Cry 1Ab toxin in the tobacco hornworm (Manduca sexta) midguts. Insect Biochem. Molec. Biol. 27, 541–550

    CAS  Google Scholar 

  23. Garczynski SF (1999) Detection and characterization of CrylAc binding molecules in brush border membrane vesicles isolated from the midguts of Manduca sexta larvae. Doctoral Dissertation. University of Georgia, Athens

    Google Scholar 

  24. Garczynski SF & Adang MJ (1995) Bacillus thuringiensis CryIA(c) 5-endotoxin binding aminopeptidase in the Manduca sexta midgut has a glycosyl-phosphatidylinositol anchor. Insect Biochem. Mol. Biol. 25, 409–415

    Article  CAS  Google Scholar 

  25. Garczynski SF, Crim JW & Adang MJ (1991) Identification of a putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis 8-endotoxin by protein blot analysis. Appl. Environ. Microbiol. 57, 2816–2820

    PubMed  CAS  Google Scholar 

  26. Gill S, Cowles EA & Francis V (1995) Identification, isolation, and cloning of a Bacillus thuringiensis CrylAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem. 270, 27277–27282

    Article  PubMed  CAS  Google Scholar 

  27. Haider MZ & Ellar DJ (1987) Analysis of the molecular basis of insecticidal specificity of Bacillus thuringiensis crystal delta-endotoxin. Biochem J. 248, 197–201

    PubMed  CAS  Google Scholar 

  28. Haider MZ & Ellar DJ (1989) Mechanism of action of Bacillus thuringiensis 8-endotoxin: interaction with phospholipid vesicles. Biochim. Biophys. Acta 978, 216–222

    Article  PubMed  CAS  Google Scholar 

  29. Hendrickx K, De Loof A & Van Mellaert H (1990) Effects of Bacillus thuringiensis delta-endotoxin on the permeability of brush border membrane vesicles from tobacco hornworm (Manduca sexta) midgut. Comp. Biochem. Physiol. 95C, 241–245

    CAS  Google Scholar 

  30. Hofmann C, Luthy P, Hutter R & Pliska V (1988b) Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 173, 85–91

    Article  PubMed  CAS  Google Scholar 

  31. Hofmann C, Vanderbruggen H, Höfte H et al. (1988) Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85, 7844–7848

    Article  PubMed  CAS  Google Scholar 

  32. Hua G, Tsukamoto K, Rasilo ML & Ikezawa H (1998) Molecular cloning of a GPI-anchored aminopeptidase N from Bombyx mori midgut: a putative receptor for Bacillus thuringiensis CrylAa toxin. Gene. 214, 177–185

    Article  PubMed  CAS  Google Scholar 

  33. Indrasith LS, Hori H (1992) Isolation and partial characterization of binding proteins for immobilized delta endotoxin from solubilized brush border membrane vesicles of the silkworm, Bombyx mori, and the common cutworm, Spodoptera litura. Comp. Biochem. Physiol. 102B, 605–610

    CAS  Google Scholar 

  34. Karlsson K-A, Angstrom J & Teneberg S (1991) On the characteristics of carbohydrate receptors for bacterial toxins: aspects of the analysis of binding epitopes, p. 435–444. In: Alouf JE & Freer JH (ed.), Sourcebook of bacterial protein toxins, Academic Press: New York.

    Google Scholar 

  35. Keeton TP, Bulla LA (1997) Ligand specificity and affinity of Bt-R1, the Bacillus thuringiensis CrylA toxin receptor from Manduca sexta, expressed in mammalian and insect cell cultures. Appl. Environ. Microbiol. 63, 3419–3425

    PubMed  CAS  Google Scholar 

  36. Keeton TP, Francis BR, Maaty WSA & Bulla LA (1998) Effects of midgut-proteinpreparative and ligand binding procedures on the toxin binding characteristics of BT-RI, a common high-affinity receptor in Manduca sexta for CrylA Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 63, 2158–2165

    Google Scholar 

  37. Knight, PJK, Crickmore N & Ellar DJ (1994) The receptor for Bacillus thuringiensis CryIA(c) 8-endotoxin in the brush border membrane is aminopeptidase N. Molec. Microbiol. 11, 429–436

    Article  CAS  Google Scholar 

  38. Knight PJK, Knowles BH & Ellar DJ (1995) Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J. Biol. Chem. 270, 17765–17770

    Article  PubMed  CAS  Google Scholar 

  39. Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal 5-endotoxins. Adv. Insect Physiol. 24, 275–308

    Article  CAS  Google Scholar 

  40. Knowles BH & Dow JAT (1993) The crystal delta-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut. Bioessays 15, 469–476

    Article  CAS  Google Scholar 

  41. Knowles BH & Ellar DJ (1986) Characterization and partial purification of a plasma membrane receptor for Bacillus thuringiensis var. kurstaki lepidopteran-specific b-endotoxin. J. Cell Sci. 83, 89–101

    PubMed  CAS  Google Scholar 

  42. Knowles BH & Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta-endotoxins with different insect specificities. Biochim. Biophys. Acta 924, 509–518

    Article  CAS  Google Scholar 

  43. Knowles BH, Knight PJ & Ellar DJ (1991) N-Acetylgalactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis. Proc. R. Soc. Lond. B 245, 31–35

    Article  CAS  Google Scholar 

  44. Knowles BH, Thomas WE & Ellar DJ (1984) Lectin-like binding of Bacillus thuringiensis var. kurstaki lepidopteran-specific toxin is an initial step in insecticidal action. FEBS Lett. 168, 197–202

    Article  PubMed  CAS  Google Scholar 

  45. Lee MK, Rajamohan F, Gould F & Dean DH (1995) Resistance to CrylA b-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl. Environ. Microbiol. 61, 3836–3842

    PubMed  CAS  Google Scholar 

  46. Lee MK, You TH, Young BA et al. (1996) Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis Cry IAc toxin. Appl. Environ. Microbiol. 62, 2845–2849

    PubMed  CAS  Google Scholar 

  47. Lingwood CA (1993) Verotoxins and their glycolipid receptors. Adv. Lip. Res. 25, 189–211

    CAS  Google Scholar 

  48. Lorence A, Darszon A & Bravo A (1997) Aminopeptidase dependent pore formation of Bacillus thuringiensis CrylAc toxin on Trichoplusia ni membranes. FEBS Lett. 414, 303–307

    Article  PubMed  CAS  Google Scholar 

  49. Lu Y-J & Adang MJ (1996) Conversion of Bacillus thuringiensis CryIAc-binding aminopeptidase to a soluble form by endogenous phosphatidylinositol phospholipase C. Insect Biochem. Molec. Biol. 26, 33–40

    CAS  Google Scholar 

  50. Luo K, Banks D & Adang MJ (1999) Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cryl 8-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 65, 457–464

    PubMed  CAS  Google Scholar 

  51. Luo K, Lu Y-j & Adang MJ (1996) A 106-kDa form of aminopeptidase is a receptor for Bacillus thuringiensis Cry1C 8-endotoxin in the brush border membrane of Manduca sexta. Insect Biochem. Molec. Biol. 26, 33–40

    Google Scholar 

  52. Luo K, Sangadala S, Masson L et al. (1997) The Heliothis virescens 170 kDa aminopeptidase functions as “receptor A” by mediating specific Bacillus thuringiensis S-endotoxin binding and pore formation. Insect Biochem. Molec. Biol. 27, 735–743

    CAS  Google Scholar 

  53. Luo K, Tabashnik BE & Adang MJ (1997) Binding of Bacillus thuringiensis Cry lAc toxin to aminopeptidase in susceptible and resistant diamondback moths (Plutella xylostella). Appl. Environ. Microbiol. 63, 1024–1027

    PubMed  CAS  Google Scholar 

  54. Magnani JF, Smith DF & Ginsburg V (1980) Detection of gangliosides that bind cholera toxin: direct binding of 125-I-labeled toxin to thin-layer chromatograms. Anal. Biochem. 109, 399–402

    Article  PubMed  CAS  Google Scholar 

  55. Martin FG & Wolfersberger MG (1995) Bacillus thuringiensis 5-endotoxin and larval Manduca sexta midgut brush-border membrane vesicles act synergistically to cause very large increases in the conductance of planar lipid bilayers. J. Exp.Biol. 198, 91–96

    PubMed  CAS  Google Scholar 

  56. Martinez-Ramirez AC, Gonzalez-Nebauer S, Escriche B & Real MD (1994) Ligand blot identification of a Manduca sexta midgut binding protein specific to three Bacillus thuringiensis CryIA-type ICPs. Biochem. Biophys. Res. Comm. 201, 782–787

    Article  PubMed  CAS  Google Scholar 

  57. Masson L, Lu Y-J, Mazza A, Brousseau R & Adang MJ (1995) The CryIA(c) receptor purified from Manduca sexta displays multiple specificities. J. Biol. Chem. 270, 20309–20315

    Article  PubMed  CAS  Google Scholar 

  58. Nagamatsu Y, Toda S, Koike T et al. (1998) Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin. Biosci. Biotechnol. Biochem. 62, 727–734

    Article  PubMed  CAS  Google Scholar 

  59. Nagamatsu Y, Toda S, Yamaguchi F et al. (1998) Identification of Bombyx mori midgut receptor for Bacillus thuringiensis insecticidal CryIA(a) toxin. Biosci. Biotechnol. Biochem. 62, 718–726

    Article  PubMed  CAS  Google Scholar 

  60. Oddou P, Hartmann H & Geiser M (1991) Identification and characterization of Heliothis virescens midgut membrane proteins binding Bacillus thuringiensis S-endotoxin. Eur. J. Biochem. 202, 673–680

    Article  PubMed  CAS  Google Scholar 

  61. Oddou P, Hartmann H, Radecke F & Geiser M (1993) Immunologically unrelated Heliothis sp. and Spodoptera sp. midgut membrane-proteins bind Bacillus thuringiensis Cry1A(b) 8-endotoxin. Eur. J. Biochem. 212, 145–150

    Article  PubMed  CAS  Google Scholar 

  62. Rajamohan F, Alcantara E, Lee MK et al. (1995) Single amino acid changes in domain II of Bacillus thuringiensis CryIAb 8-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J. Bacteriol. 177, 2276–2282

    PubMed  CAS  Google Scholar 

  63. Rajamohan F, Lee MK & Dean DH (1998) Bacillus thuringiensis insecticidal proteins: molecular mode of action. Prog. Nucleic Acids Mol. Biol. 60, 1–27

    Google Scholar 

  64. Sanchis V & Ellar DJ (1993) Identification and partial purification of a Bacillus thuringiensis CryIC 8-endotoxin binding protein from Spodoptera litoralis gut membranes. FEBS Letters 3, 264–268

    Article  Google Scholar 

  65. Sangadala S, Walters F, English LH & Adang MJ (1994) A mixture of Manduca sexta aminopeptidase and alkaline phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb+-K+ leakage in vitro. J. Biol. Chem. 269, 10088–10092

    PubMed  CAS  Google Scholar 

  66. Schnepf E, Crickmore N, Van Rie J et al. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806

    PubMed  CAS  Google Scholar 

  67. Schwartz J, Garneau L, Masson L & Brousseau R (1991) Early response of cultured lepidopteran cells to exposure to 8-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels. Biochim. Biophys. Acta. 1065, 250–260

    Google Scholar 

  68. Schwartz JL, Garneau L, Savaria D et al. (1993) Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation-and anion-selective channels in planar lipid bilayers. J. Membr. Biol. 132, 53–62

    PubMed  CAS  Google Scholar 

  69. Schwartz JL, Lu Y-J, Sohnlein P et al. (1997) Ion channels formed in planar lipid bilayers by Bacillus thuringiensis toxins in the presence of Manduca sexta midgut receptors. FEBS Lett. 412, 270–276

    Article  PubMed  CAS  Google Scholar 

  70. Slatin SL, Abrams CK & English L (1990) Delta-endotoxins form cation-selective channels in planar lipid bilayers. Biochem. Biophys. Res. Commun. 169, 765–772

    Article  PubMed  CAS  Google Scholar 

  71. Soutar AK, Wade DP (1989) Ligand blotting, p. 55–76. In: ( Creighton TE, ed.), Protein function: a practical approach, IRL Press, Oxford

    Google Scholar 

  72. Tabashnik BE, Finson N, Groeters FR et al. (1994) Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Natl. Acad. Sci. USA 91, 4120–4124

    Article  PubMed  CAS  Google Scholar 

  73. Takesue, YK, Yokota K, Miyajima S, Taguchi R & Ikezawa H (1989) Membrane anchors of alkaline phosphatase and trehalase associated with the plasma membrane of larval midgut epithelial cells of the silkworm, Bombyx mori. J. Biochem. 105, 998–1001

    PubMed  CAS  Google Scholar 

  74. Takesue S, Yokota K, Miyajima S et al. (1992) Partial release of aminopeptidase N from larval midgut cell membranes of the silkworm, Bombyx mori, by phosphatidylinositol-specific phospholipase C. C.mp. Biochem. Physiol. 102B, 7–11

    Article  CAS  Google Scholar 

  75. Towbin H, Staehelin T & Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocelluslose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76, 4350–4354

    Article  PubMed  CAS  Google Scholar 

  76. Vadlamudi RK, Ji TH & Bulla LA (1993) A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. berliner. J. Biol. Chem. 268, 12334–12340

    PubMed  CAS  Google Scholar 

  77. Vadlamudi R, Weber KE, Ji I, Ji TH & Bulla LA (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem. 270, 54905494

    Google Scholar 

  78. Valaitis AP, Lee MK, Rajamohan F & Dean DH (1995) Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) 8-endotoxin of Bacillus thuringiensis. Insect Biochem. Molec. Biol. 25, 1143–1151

    CAS  Google Scholar 

  79. Valaitis AP, Mazza A, Brousseau R & Masson L (1997) Interaction analyses of Bacillus thuringiensis Cry IA toxins with two aminopeptidases from gypsy moth midgut brush border membranes. Insect Biochem. Molec. Biol. 27, 529–539

    CAS  Google Scholar 

  80. Van Rie J, Jansens S, Höfte H, Degheele D & Van Mellaert H (1989) Specificity of Bacillus thuringiensis delta-endotoxins. Eur. J. Biochem. 186, 239–247

    Article  PubMed  Google Scholar 

  81. Van Rie J, Jansens S, Höfte H, Degheele D & Van Mellaert H (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins Appl. Environ. Microbiol. 56, 1378–1385

    Google Scholar 

  82. Weitzhandler M, Kadlecek D, Avdalovic N et al. (1993) Monosaccharide and oligosaccharide analysis of proteins transferred to polyvinylidene fluoride membranes after sodium dodecyl sulfate polyacrylamide gel electrophoresis. J. Biol. Chem. 268, 5121–5130

    PubMed  CAS  Google Scholar 

  83. Wolfersberger MG (1990) The toxicity of two Bacillus thuringiensis 6-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia 46, 475–477

    Article  PubMed  CAS  Google Scholar 

  84. Wolfersberger MG (1995) Permeability of Bacillus thuringiensis CryI toxin channels, In: “Molecular action of insecticides on ion channels”, J. Marshall Clark, ed. ( Washington, D.C: American Chemical Society ). pp. 294–301

    Chapter  Google Scholar 

  85. Wolfersberger MG, Luthy P, Maurer A et al. (1987) Preparation and partial characterisation of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. 86A, 301–308

    Article  Google Scholar 

  86. Woodward MR, Young WW & Bloodgood RA (1985) Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J. Immunol. Methods 78, 143–153

    Article  PubMed  CAS  Google Scholar 

  87. Yaoi K, Kadotani T, Kuwana H et al. (1997) Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis CrylAa toxin. Eur. J. Biochem. 246, 652–657

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Garczynski, S.F., Adang, M.J. (2000). Investigations of Bacillus thuringiensis Cry1 toxin receptor structure and function. In: Charles, JF., Delécluse, A., Roux, C.NL. (eds) Entomopathogenic Bacteria: from Laboratory to Field Application. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1429-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1429-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5542-2

  • Online ISBN: 978-94-017-1429-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation