Approximate Self-Affinity: Methodology and Remote Sensing Applications

  • Chapter
Microwave Physics and Techniques

Part of the book series: NATO ASI Series ((ASHT,volume 33))

Abstract

It is already almost two decades since fractals [1] obtained their name and were developed from merely curious mathematical constructions into an important instrumentation for practically all natural and engineering sciences [2, 3, 4]. These advances were brought about by the efforts to model and characterize complex structures and processes which either cannot be approximated using Euclidean objects or such an approximation proves inefficient. To facilitate the discussion, consider an example taken from the remote sensing practice, see Fig. 1, where a laser profiler measured profile of cultivated soil [5, 6] is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mandelbrot, B.B. (1979) Fractals, W.H. Freeman and Company, San Francisco; Mandelbrot, B.B. (1982) The Fractal Geometry of Nature, W.H. Freeman and Company, San Francisco.

    Google Scholar 

  2. Feder, J. (1988) Fractals, Plenum, New York.

    MATH  Google Scholar 

  3. Schroder, M.R. (1991) Fractals, Chaos, Power Laws, W. H. Freeman and Company, New York.

    Google Scholar 

  4. Barabási, A.-L. and Stanley, H.E. (1995) Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  5. Wegmüller, U., Mätzler, C., Active and passive microwave signature catalog (2-12 GHz), Inst. Appl. Phys. Univ. Bern, Bern, Switzerland, Tech. Rep. (1993).

    Google Scholar 

  6. Wegmüller, U., Mätzler, C., Hüppi, R., and Schanda, E. (1994) Active and passive microwave signature catalog on bare soil (2-12 GHz), IEEE Trans, on Geosci. Rem. Sen. 32, 698–702.

    Article  Google Scholar 

  7. Bak, P., Tang, C., and Wiesenfeld, K. (1987) Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett 59, 381–384; Bak, P., Tang, C., and Wiesenfeld, K. (1988) Self-organized criticality, Phys. Rev. A 38, 364-374.

    Article  MathSciNet  Google Scholar 

  8. Berry, M.V. (1979) DifTractals, J. Phys. A: Math. Gen. 12, 781–797.

    Article  MATH  Google Scholar 

  9. Panchev, S. (1971) Random Functions and Turbulence Pergamon Prees, Oxford; Monin, A.S. and Yaglom, A.M. (1971) [itStatistical Fluid Mechanics} MIT Press, Boston.

    MATH  Google Scholar 

  10. Priestley, M.A. (1981) Spectral Analysis and Time Series Academic Press, London.

    MATH  Google Scholar 

  11. Yordanov, O.I. and Ivanova, K. (1995) Description of surface roughness as an approximate self-affine random structure, Surface Science 331-333 1043–1049.

    Article  Google Scholar 

  12. Orey, S. (1970) Gaussian sample functions and the Hausdorff dimension of level crossings Z. Wahrsch'theorie verw. Geb. 15, 249–256.

    Article  MATH  MathSciNet  Google Scholar 

  13. Falconer, K.J. (1985) The Geometry of Fractal Sets Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  14. Sayles, R.S. and Thomas, T.R. (1978) Surface topography as a nonstationary random process, Nature (London) 271, 431–434; Berry M.V. and Hannay, J.R. (1978) Nature (London) 273, 573 (1978); Klinkenberg, B. and Goodchild, M.F. (1992) The fractal properties of topography: A comparison of methods, Earth Surface Processes and Landforms 17, 217-234.

    Article  Google Scholar 

  15. Mandelbrot, B.B., Passoja, D.E., and Paullay, A.J. (1984) Fractal character of fracture sufaces of metals, Nature (London) 308, 721; Zhenyi M., Langford, S.C., Dickinson, J.T., Engelhard, M.H., and Baer, D.R. (1991) Fractal character of crack propagation in epoxy and apocy composites as revealed by photon emission during fracture, J. Mater. Res. 6, 183-195.

    Article  Google Scholar 

  16. Bell, T.H. Jr (1979) Mesoscale sea floor roughness, Deep-Sea Res. 26A, 65–76.

    Article  Google Scholar 

  17. Fuks, I.M., (1983) Radiophys. Quantum Electron. 26, 865 (1983).

    Article  Google Scholar 

  18. Kolmogorov, A.N. (1941) The local structure of turbulence in incompressible viscous fluid, C.R. Acad. Sci. USSR 30, 299 (1941); Chen, S., Doolen, G.D., Kraichnan, R.H., and She Z.-S. (1993) On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence, Phys. Fluids A 5, 458.

    Google Scholar 

  19. Phillips, O.M. (1958) On the dynamics of unsteady gravity waves of finite amplitude, J. Fluid Mech. 4, 226; Zakharov, V.E. and Filonenko, N.N. (1967) Weak Tubulence of Capillary Waves, J. Appl Mech. Tech. Phys. 8, 62-67.

    Article  Google Scholar 

  20. Pierson, W.J. Jr., and Moskowitz, L. (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii, J. Geophys. Res. 69, 5181; Cuissard A., Baufays C., Sobieski P. (1986) Sea surface description requirements for electromagnetic scattering calculations, J. Geophys. Res. 91, 2477-2492; Elgar, S. and Mayer-Kress, G. (1989) Observations of the fractal dimension of deep-and shallow-water ocean surface gravity waves, Physica D 37, 104-108; Stiassnie, M.Y., Agnon, Y., and Shemer, L. (1991) Fractal dimensions of random water surfaces, Physica D 47, 341-352.

    Article  Google Scholar 

  21. Mandelbrot, B.B. and Van Ness, J.W. (1968) Fractional Brownian Motious, Fractional Noises and Applications, SIAM Review 10, 422–436; Llosa, J. and Masoliver, J. (1990) Fractal dimension for Gaussian colored processes, Phys. Rev. A 42, 5011-5014.

    Article  MATH  MathSciNet  Google Scholar 

  22. Voss, R.F. (1992) Phys. Rev. Lett. 68, 3805; Stanley, H.E. (1992) Physica A 186, 1.

    Article  Google Scholar 

  23. Yordanov, O.I. and Nickolaev, N.I. (1994) Self-affinity of time series with finite domain power-law power spectrum, Phys. Rev. E 49 R2517–R2520.

    Article  Google Scholar 

  24. Yordanov, O.I. and N. Nickolaev, N.I. (1996) Approximate, saturated and blurred self-affinity of random processes with finite domain power-law power spectrum, Physica D (accepted for publication).

    Google Scholar 

  25. N. P. Greis and H.S. Greenside, Phys. Rev. A 44 (1991) 2324.

    Article  Google Scholar 

  26. Hasselman, K., et al., (1973) Herausgegeben vorn Deutsch. Hydrograph. Institut., Reihe A 12 95; Cuissard A., Baufays, C. and Sobieski, P. (1994) Fully and non-fully developed sea models for microwave remote sensing applications, Rem. Sens. Environment 48 25-38.

    Google Scholar 

  27. Rasigni G., F. Varnier, M. Rasigni, J. P. Palmari, and A. Llebaria (1983) Roughness spectrum and surface plasmons for surfaces of silver, copper, gold, and magnesium deposits, Phys. Rev. B, 27, 819–830.

    Article  Google Scholar 

  28. G. K. Batchelor, Proc. Camb. Philos. Soc. 47 (1951) 359.

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Lohse and A. Müler-Groeling, Phys. Rev. Lett. 74 (1995) 1747.

    Article  Google Scholar 

  30. T. Hwa and M. Kardar, Phys. Rev. A 45 (1992) 7002.

    Article  Google Scholar 

  31. N. C. Pesheva, J. G. Brankov and E. Canessa (1996) Layer features of the lattice gas model for self-organized criticality, Phys. Rev. E 53, 2099–2103.

    Article  Google Scholar 

  32. O. I. Yordanov and A. Guissard, (1996) Approximate self-affine model for cultivated soil roughness Physica A, submitted for publication.

    Google Scholar 

  33. Press, W.H., Flaunery, B.P., eukolsky, S.A., and Vetterling, W.T. (1988) Numerical Recipes, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  34. Persival, D.B. (1991) Characterization of frequency stability: frequency-domain estimation of stability measures, Proc. of IEEE 79, 961–972.

    Article  Google Scholar 

  35. Bender, C. M. and Orszag, S. A. (1978) Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yordanov, O.I., Ivanova, K., Michalev, M.A. (1997). Approximate Self-Affinity: Methodology and Remote Sensing Applications. In: Groll, H., Nedkov, I. (eds) Microwave Physics and Techniques. NATO ASI Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5540-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5540-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6333-3

  • Online ISBN: 978-94-011-5540-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation