Scanning Probe Microscopy (STM, AFM) Investigation of Carbon Nanotubes

  • Chapter
Frontiers of Nano-Optoelectronic Systems

Part of the book series: NATO Science Series ((NAII,volume 6))

Abstract

The image formation in scanning tunneling microscopy (STM), atomic force microscopy (AFM), and the particularities of imaging supported carbon nanotubes by STM and AFM are discussed. The milestones of STM, STS, and AFM measurements on carbon nanotubes are briefly reviewed. Scanning tunneling spectroscopy (STS) measurements, and atomic resolution images of single-wall and multi-wall carbon nanotubes supported on graphite are compared to typical data for graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Iijima, S (1991) Helical microtubules of graphitic carbon, Nature 354, 56–58.

    Article  ADS  Google Scholar 

  2. Dresselhaus, M.S., Dresselhaus, G., Ecklund P.C. (1996) Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.

    Google Scholar 

  3. Ebbesen Th. W. (Editor) (1997) Carbon Nanotubes. Preparation and Properties, CRC Press, Boca Raton.

    Google Scholar 

  4. Mintmire, J.W., Dunlap, B.I., and White, C.T. (1992) Arc fullerenc Tubules Metalic?, Phys. Rev, Lett. 68, 631–634.

    Article  ADS  Google Scholar 

  5. Binnig, G. and Rohrer, H. (1982) Scanning tunneling Microscopy, Helv. Phys. Acta 55, 726–735.

    Google Scholar 

  6. Binnig G., Quate, C.F., Gerber Ch. (1986) Atomic Force Microscope, Phys. Rev. Lett. 56, 930–933.

    Article  ADS  Google Scholar 

  7. Wiesendanger, R. (1994) Scanning Probe Microscopy and Spectroscopy, Cambridge University Press, Cambridge.

    Google Scholar 

  8. Tersoff J. and Hamann D.R. (1985) Theory of the scanning tunneling microscope, Phys, Rev. B 31, 805–813.

    Article  ADS  Google Scholar 

  9. Ciraci, S., Baratoff, A. and Batra, I.P. (1990a) Tip-sample interaction effects in scanning-tunneling and atomic-force microscopy, Phys. Rev. B 41, 2763–2775.

    Article  ADS  Google Scholar 

  10. Ge, M. and Sattler, K. (1993) Vapor_condenstaion Generation and STM Analysis of Fullerene Tubes, Science 260, 515–518.

    Google Scholar 

  11. Jxhic, J., Sattler, K., Gc, M., Vcrkateswaran, N. Giant and supergiant lattices on graphite, Phys Rev. B 47, 15835–15841.

    Google Scholar 

  12. Oik, Ch. H., Heremans, J.P. (1994) Scanning tunneling spectroscopy of carbon nanotubes, J. Mater. Res. 9, 259–262.

    Article  ADS  Google Scholar 

  13. BirĂ³, L.P., Gyulai. J., Lambin, Ph., B. Nagy, J., Lazraescu, S., Mark, G.I., Fonseca, A., SurjĂ¡n, P., R., Szekeres, Zs., Thiry, P.A., Lucas, A.A. (1998) Scanning tunneling microscopy (STM) imaging of carbon nanotubes, Carbon 36, 689–696.

    Article  Google Scholar 

  14. MĂ¡rk, G.I., BirĂ³, L.P., Gyulai, J. (1998) Simulation of STM images of three-dimensional surfaces and comparison with experimental data: Carbon nanotubes, Phys. Rev. B 58, 12645–12648. 15 Ref. [7], pp. 30-34.

    Article  ADS  Google Scholar 

  15. BirĂ³, L.P., Lazarescu, S., Lambin, Ph., Thiry, P.A., Fonseca, A., B.Nagy, J., Lucas, A.A., (1997) Scanning tunneling microscope investigation of carbon nanotubes produced by catalytic decomposition of acetylene, Phys. Rev. B 56, 12490–12498.

    Article  ADS  Google Scholar 

  16. BirĂ³, L.P., B. Nagy, J., Lambin, Ph., Lazarescu, S., Fonseca, A., Thiry, P.A., Lucas, A.A., (1998) Scanning tunneling microscopy of carbon nanoyubes. Beyond the image, in H. Kuzmany, J. Fink, M. Mehring and S. Roth (eds.), Molecular Nanostructures, World Scientific, Singapore pp. 419–422.

    Google Scholar 

  17. Agrait, N., Rodrigo, J.G., and Vieira, S., (1992) On the transition from tunneling regime to point contact: graphite, Ultramicroscopy 42-44, 177–183

    Article  Google Scholar 

  18. Mark, G.I., BirĂ³, L.P., Gyulai, J., Thiry, P.A., Lambin, Ph. (1999) The use of computer simulation to investigate tip shape and point contact effects during scanning tunneling microscopy of supported nanostructures, in H. Kuzmany, J. Fink, M. Mehring and S. Roth (eds.), Electronic Properties of Novel Materials — Science and Technology of Molecular Nanostructures, American Institute of Physics, Melville, pp.323–32

    Google Scholar 

  19. Wildöer, J.W., Vcnoma, L.C., Rinyler, G.R., Smallez, R.E., Dckker, C. (1998) Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59–62

    Article  ADS  Google Scholar 

  20. Odom, T.W., Huang, J-L., Kim. Ph., Lieber, Ch. M., (1998) Atomic structure and electronic properties of single-walled carbon nanotubes, Native 391, 62–64

    Google Scholar 

  21. Meunier, V. (1998) Tight-binding computation of the STM image of carbon nanotubes, Phys. Rev. Lett. 81, 5588–5591

    Article  ADS  Google Scholar 

  22. Olk, C.H., Heremans, J., Dresselahaus, M.S., Speck, J.S., Nicholls, J.T. (1990) Scanning tunneling microscopy of a stage-1 CuCll2 graphite intercalation compound, Phys. Rev. B 42, 7524–7529

    Article  ADS  Google Scholar 

  23. Charlier, J.-C., and Lambin, Ph. (1998) Electronic structure of carbon nanotubes with chiral symmetry, Phys. Rev. B 57, R15037–R15039

    Article  ADS  Google Scholar 

  24. Carroll, D.L., Redlich, P., Ajayan, P.M., Charlier, J.C., Blase, X., De Vita, A., and Car, R, (1997) Electronic structure and localized states at carbon nanotube tips, Phys. Rev. Lett. 78, 2811–2814

    Article  ADS  Google Scholar 

  25. Biro, L.P., Ehlich, R., Tellgmann, R., Gromov, A., Krawez, N., Tschaplyguine, M., Pohl, M.-M., Veretsy, Z., Horväth, Z.E., Campbell, E.E.B. (1999) Growth of carbon nanotubes by fullerene decomposition in the presence of transition metals, Chem. Phys. Lett. 306, 155–162.

    Article  ADS  Google Scholar 

  26. BirĂ³, L.P., Ehlich, R., (submitted to Appl. Phys. Lett.) Room temperature growth of single and multi wall carbon nanotubes by [60]fullerene decomposition in the presence of transition metals.

    Google Scholar 

  27. Lambin, Ph., Charlier, J.-C, Michenaud, J.-P., (1994) Electronic structure of coaxial carbon tubules in H. Kuzmany, J. Fink, M. Mehring, S. Roth (eds.), Progress in Fullerene Research, World Scientific, Singapore, pp. 131–134.

    Google Scholar 

  28. Venema, L.C., Wildöer, J.W.G., Temminck Tuinstra, H.L.J., Dekker, C., Rinzler, A, G., Smaller, R., E., (1997) Length control of individual carbon nanotubes by nanostmcturing with a scanning tunneling microscope, Appl. Phys. Lett. 71, 2629–2631

    Article  ADS  Google Scholar 

  29. Nagy, P., Ehlich, R., BirĂ³, L.P., Gyulai, J., (2000) Y-branching of single walled carbon nanotubes, Appl. Phys. A. 70. 481–483

    Article  ADS  Google Scholar 

  30. BirĂ³. L.P., Lazarescu, S.D., Thiry, P.A., Fonseca, A., B.Nagy, J., Lucas, A.A., Lambin Ph. (in press) Scanning tunneling microscopy observation of tightly wound, single-wall coiled carbon nanotubes, Europhys. Lett.

    Google Scholar 

  31. Gallagher. M.J., Chen, Dong., Jacobsen, B.P., Saris, D., Lamb, L.D., Tinker, F.A., Jiao, J. Huffman, D. R., Seraphin, S., and Zhou, D. (1993) Characterization of carbon nanotubes by scanning probe microscopy Surf Sci. Lett. 281, L335–L340

    Article  Google Scholar 

  32. Höper, R., Workman, R.K., Chen, D. Sarid, D., Ydav, T., Withers, J.C., Loufty, R.O. (1994) Single shell carbon nanotubes imaged by atomic force microscopy, Surface Science 311, L731–L736

    Article  Google Scholar 

  33. Hertel, T., Walkup, R.E., Avouris, Ph., (1998) Deformation of carbon nanotubes by surface van der Waals forces, Phys. Rev. B 58, 13870–13873

    Article  ADS  Google Scholar 

  34. Wong, E.W., Sheehan, P.E., Lieber, Ch.M. (1997) Nanobeam Mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Nature 227, 1971–1975

    Google Scholar 

  35. Falvo, M.R., Clary, G.J., Taylor II, R.M., Chi, V., Brooks Jr., F.P., Washburn S., Superfine, R. (1997) Bending and buckling of carbon nanotubes under large strain, Nature 389, 582–584.

    Article  ADS  Google Scholar 

  36. Salvetat, J.-P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., ForrĂ³, L., Benoit, W., Zuppiroli, L. (1999) Mechanical properties of carbon nanotubes, Appl. Phys. A 69, 255–260.

    Article  ADS  Google Scholar 

  37. Dai, H., Wong, E.W., Liebcrf, Ch. M., (1996) Probing electrical Transport in Nanomaterials: Conductivity of individual carbon nanotubes, Science 271, 523–526

    Article  ADS  Google Scholar 

  38. Muster, J., Duesberg, G.S., Roth, S., Burghard, M. (1999) Application of scanning force microscopy in nanotube science, Appl. Phys. A 69, 261-167.

    Google Scholar 

  39. Biro, L.P., SzabĂ³, B., MĂ¡rk, G.I., Gyulai. J., HavancsĂ¡k, K., Kiirti, J., Dunlop, A., Frey, L., Ryssel, H. (1999) Carbon nanotubes produced by high energy (E > 100 MeV), heavy ion irradiation of graphite, Nucl. Instr. and Meth. B. 148, 1102–11

    Article  ADS  Google Scholar 

  40. BirĂ³, L.P., Mark, G.I., Gyulai, J., Rozlosnik, N., Kiirti, J., Szabö, B., Frey, L., Ryssel, H. (1999) Scanning probe method investigation of carbon nanotubes produced by high energy ion irradiation of graphite, Carbon 37, 739–744.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

BirĂ³, L.P. (2000). Scanning Probe Microscopy (STM, AFM) Investigation of Carbon Nanotubes. In: Pavesi, L., Buzaneva, E. (eds) Frontiers of Nano-Optoelectronic Systems. NATO Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0890-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0890-7_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6746-8

  • Online ISBN: 978-94-010-0890-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation