Part of the book series: NATO Science Series ((NSSE,volume 372))

Abstract

The basic principles of operation of atomic force microscopy (AFM), and the image formation mechanisms are discussed. In contact mode AFM the tip/sample interaction used to generate the image and to regulate the feedback loop is based on the deformation of the cantilever pressed against the sample. In tap** mode AFM this role is played by the flow of vibration energy from the piezoelectrically driven, vibrated cantilever into the sample. Superimposed on the significantly more pronounced tip/sample convolution effects than in the case of scanning tunneling microscopy, the two different kinds of interaction may generate different kinds of artifacts (compression of the tube, “snakeing”, etc.)

The milestones of the AFM investigation of carbon nanotubes will be reviewed.

Contact, and tap** mode AFM measurements of carbon nanotubes grown in-situ by high energy, heavy ion irradiation will be used to discuss in more detail some particularities of the image formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 9.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Electronic Structure and Applications of Carbon Nanotubes, This volume

    Google Scholar 

  2. Iijima, S (1991) Helical microtubules of graphitic carbon, Nature 354, 56–58.

    Article  CAS  Google Scholar 

  3. Treacy, M. M. J., Ebbesen, T. W., Gibson, J. M. (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature 381, 678–680

    Article  CAS  Google Scholar 

  4. Binnig G., Quate, C. F., Gerber Ch. (1986) Atomic Force Microscope, Phys. Rev. Lett. 56, 930–933.

    Article  Google Scholar 

  5. Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T., Smalley, R. E. (1996) Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147–150.

    Article  CAS  Google Scholar 

  6. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung C. L., Lieber, Ch. M. (1998) Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature 394, 52–55.

    Article  CAS  Google Scholar 

  7. Cooper, E. B., Manalis, S. R., Fang, H., Dai, H., Matsumoto, K., Minne, S. C., Hunt, T., Quate, C. F. (1999) Terabit-per-square-inch data storage with the atomic force microscope, Appl. Phys. Lett. 75, 3566–3568

    Article  CAS  Google Scholar 

  8. Binnig, G. and Rohrer, H. (1982) Scanning Tunneling Microscopy, Hely. Phys. Acta 55, 726–735.

    CAS  Google Scholar 

  9. Biró, L. P., Márk, G. I., Scanning tunneling microscopy investigation of carbon nanotubes, This volume

    Google Scholar 

  10. Ciraci, S., Baratoff, A. and Batra, I. P. (1990) Tip-sample interaction effects in scanning-tunneling and atomic-force microscopy, Phys. Rev. B 41, 2763–2775.

    Article  Google Scholar 

  11. Gallagher. M. J., Chen, Dong., Jacobsen, B. P., Saris, D., Lamb, L. D., Tinker, F. A., Jiao, J. Huffman, D. R., Seraphin, S., and Zhou, D. (1993) Characterization of carbon nanotubes by scanning probe microscopy Surf Sci. Lett. 281, L335–L340

    Article  CAS  Google Scholar 

  12. Höper, R., Workman, R. K., Chen, D. Sarid, D., Ydav, T., Withers, J. C., Loufty, R. O. (1994) Single shell carbon nanotubes imaged by atomic force microscopy, Surface Science 311, L731–L736

    Article  Google Scholar 

  13. Hertel, T., Walkup, R. E., Avouris, Ph., (1998) Deformation of carbon nanotubes by surface van der Waals forces, Phys. Rev. B 58, 13870–13873

    Article  CAS  Google Scholar 

  14. Wong, E. W., Sheehan, P. E., Lieber, Ch. M. (1997) Nanobeam mechanics• elasticity, strength, and toughness of nanorods and nanotubes, Nature 227, 1971–1975

    Google Scholar 

  15. Falvo, M. R., Clary, G. J., Taylor II, R. M., Chi, V., Brooks Jr., F. P., Washburn S., Superfine, R. (1997) Bending and buckling of carbon nanotubes under large strain, Nature 389, 582–584.

    Article  CAS  Google Scholar 

  16. Salvetat, J.-P., Bonard, J.-M., Thomson, N. H., Kulik, A. J., Forró, L., Benoit, W., Zuppiroli, L. (1999) Mechanical properties of carbon nanotubes, Appl. Phys. A 69, 255–260.

    Google Scholar 

  17. Dai, H., Wong, E. W., Lieber, Ch. M., (1996) Probing Electrical Transport in Nanomaterials: Conductivity of individual carbon nanotubes, Science 271, 523–526

    Article  Google Scholar 

  18. Muster, J., Duesberg, G. S., Roth, S., Burghard, M. (1999) Application of scanning force microscopy in nanotube science, Appl. Phys. A 69, 261–167.

    Google Scholar 

  19. Biró, L. P., Szabó, B., Márk, G. I., Gyulai. J., Havancsák, K., Kürti, J., Dunlop, A., Frey, L., Ryssel, H. (1999) Carbon nanotubes produced by high energy (E > 100 MeV), heavy ion irradiation of graphite, Nucl. Instr. and Meth. B. 148, 1102–1105

    Article  Google Scholar 

  20. Biró, L. P., Gyulai,J., Lambin, Ph., B.Nagy, J., Lazraescu, S., Márk, G. I., Fonseca, A., Surján, P. R., Szekeres, Zs., Thiry, P. A., Lucas, A. A. (1998) Scanning tunneling microscopy (STM) imaging of carbon nanotubes, Carbon 36, 689–696.

    Google Scholar 

  21. Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y-S., Lee, T. R., Colbert D. T., Smalley, R. E. (1998) Fullerene Pipes, Science 280, 1253–1256.

    Article  CAS  Google Scholar 

  22. Buldum, A., Lu, J. P. (1999) Atomic Scale Sliding and Rolling of Carbon Nanotubes, Phys. Rev. Lett. 83, 5050–5053.

    Google Scholar 

  23. Biró, L. P., Lazarescu, S., Lambin, Ph., Thiry, P. A., Fonseca, A., B.Nagy, J., Lucas, A. A., (1997) Scanning tunneling microscope investigation of carbon nanotubes produced by catalytic decomposition of acetylene, Phys. Rev. B 56, 12490–12498.

    Google Scholar 

  24. Clauss, W., Freitag, M., Bergereon, D. J., Johnosn, A. T. (1999) Characterization of Single Wall Carbon Nanotubes by Scanning Tunneling and Scanning Force Microscopy, in H. Kuzmany, J. Fink, M. Mehring and S. Roth (eds.), Electronic Properties of Novel Materials — Science and Technology of Molecular Nanostructures, American Institute of Physics, Melville, pp.308–312.

    Google Scholar 

  25. Biró, L. P., Márk, G. I., Gyulai, J., Rozlosnik, N., Kürti, J., Szabó, B., Frey, L., Ryssel, H. (1999) Scanning probe method investigation of carbon nanotubes produced by high energy ion irradiation of graphite, Carbon 37, 739–744.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Biró, L.P. (2001). Atomic Force Microscopy Investigation of Carbon Nanotubes. In: Biró, L.P., Bernardo, C.A., Tibbetts, G.G., Lambin, P. (eds) Carbon Filaments and Nanotubes: Common Origins, Differing Applications?. NATO Science Series, vol 372. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0777-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0777-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6908-0

  • Online ISBN: 978-94-010-0777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation