Ruthenium Catalysts for Ring-Opening Metathesis Polymerization (ROMP) and Related Chemistry

  • Chapter
Ring Opening Metathesis Polymerisation and Related Chemistry

Part of the book series: NATO Science Series ((NAII,volume 56))

Abstract

Ring-opening metathesis polymerization (ROMP), ring-closing metathesis (RCM) and ring-opening cross metathesis (RO/CM) are interesting methods to synthesize polymers with attractive mechanical and electrical properties, and specialty chemicals. Ruthenium and osmium based catalysts are water stable and possess a remarkable tolerance towards most functional groups. Whereas the first generation of well defined ruthenium based ROMP catalysts, cationic complexes like Ru(H2O)6tos2 (tos=toluene-4-sulfonate) and Ru(arene)2tos2 (activated by UV-irradiation) showed much lower reactivities as compared to “activated” early transition metal catalysts, Ru-phosphine complexes like RuCl2(p-MeC6H4CHMe2)(PCy3) (1, Cy=cyclohexyl) developed by Ciba SC and later Ru-phoshine-carbenes, developed by Grubbs et al. and Ciba SC are able to polymerize a large range of cycloolefins including DCPD (in technical quality and in mixtures with additives and fillers) very efficiently. The new classes of ruthenium carbene complexes are accessible by a novel synthesis which avoids the use of hydrogen gas and is therefore easy to scale up. Catalyst reactivities in ROMP of different monomers (characterized in terms of their turn-over frequencies (TOF) and compared with other catalysts for olefin polymerization), in RCM and RO/CM are very much dependent on the ligand sphere and the type of monomer used. Polymerizations were conducted in bulk, solution and dispersion with a large range of non-functionalized and functionalized 2-norbornene derivatives to obtain linear and crosslinked homo- and copolymers (block and random) which may find useful applications in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ivin, K.J. and Mol, J.C. (1996) Olefin Metathesis and Metathesis Polymerization, Academic Press, London.

    Google Scholar 

  2. Bell, A. (1992) J. Mol. Catal. 76, 165.

    Article  CAS  Google Scholar 

  3. Goodall, B.L., Kroenke, W.J., Minchak, R.J. and Rhodes, L.F. (1993) J. Appl. Polym. Sci. 47, 607.

    Article  CAS  Google Scholar 

  4. Schaverien, C.J., Dewan, J.C. and Schrock, R.R. (1986) J. Am. Chem. Soc. 108, 2771.

    Article  CAS  Google Scholar 

  5. Novak, B.M. and Grubbs, R.H. (1988) J. Am. Chem. Soc. 110, 960.

    Article  CAS  Google Scholar 

  6. In fact, it was reported that DCPD is a poison for ruthenium-initiated ROMP: Tanielian, C., Kiennemann, A. and Osparpucu, T. (1979) Can. J. Chem. 57, 2022.

    Article  Google Scholar 

  7. Hafner, A., Muehlebach, A. and van der Schaaf, P.A. (1997) Angew. Chem. Int. Ed. Engl. 36, 2121.

    Article  CAS  Google Scholar 

  8. Hafner, A., van der Schaaf, P.A. and Muehlebach, A. US-P 5, 998,326 (Ciba S.C.), Prio: 23.5.97.

    Google Scholar 

  9. Irgafos TNPP is a liquid processing stabilizer for styrenics, PUR and elastomers.

    Google Scholar 

  10. Schwab, P., France, M.B., Ziller, J.W. and Grubbs, R.H. (1995) Angew. Chem. 107, 2179; (1995) Angew. Chem. Int. Ed. Engl. 34, 2039.

    Article  Google Scholar 

  11. Muehlebach, A., van der Schaaf, P.A. and Hafner, A. EP 891, 384 (Ciba S.C.), prio. 4.4.96.

    Google Scholar 

  12. Gruenwald, C., Gevert, O., Wolf, J., Gonzales-Herrero, P. and Werner, H. (1996) Organometallics, 15, 1960; Wolf, J., Stuer, W., Gruenwald, C., Werner, H., Schwab, P. and Schulz, M. (1998) Angew. Chem., Int. Ed. Engl.37, 1124.

    Article  CAS  Google Scholar 

  13. Wilhelm, T.E., Belderrain, T.R., Brown, S.N. and Grubbs, R.H. (1997) Organolmetallics 16, 3867; Grubbs, R.H., Belderrain, T.R., Brown, S.N. and Wilhelm, T.E. WO Pat. 98 21, 214 (CalTech) [Chem. Abstr. 1998, 129, 41513].

    Article  CAS  Google Scholar 

  14. van der Schaaf, P.A., Kolly, R., Hafner, A. and Muehlebach, A. EP Pat. 839,821 (Ciba SC) [Chem. Abstr. 1998, 129, 41274].

    Google Scholar 

  15. Burrow, T., Sabo-Etienne, S. and Chaudret, B. (1995) Inorg. Chem. 34, 2470.

    Article  CAS  Google Scholar 

  16. Esteruelas, M.A., Lahoz, F.J., Onate, E., Oro, L.A., Valero, C. and Zeier, B. (1995) J. Am. Chem. Soc. 117, 7935.

    Article  CAS  Google Scholar 

  17. van der Schaaf, P.A., Kolly, R. and Hafner, A. (2000) Chem. Commun. 1045.

    Google Scholar 

  18. Similar results were obtained earlier with 2-norbornene mono-and diesters.

    Google Scholar 

  19. See e.g. Kanaoka, S. and Grubbs, R.H. (1995) Macromolecules 28, 4707.

    Article  CAS  Google Scholar 

  20. van der Schaaf, P.A., Kolly, R., Kirner, H.-J., Rime, F., Mühlebach, A. and Hafner, A. J. Organomet. Chem., in press.

    Google Scholar 

  21. Tetradecylnorbornene (C14-NBE; yield: 22%, liquid, b.p. 125-130°C at p=0.018 mbar, m.p. +4°C, GCpurity: >95%, mixture of isomers), a new norbornene-type monomer with long alkyl chain, was synthesized from 1-hexadecene and cyclopentadiene (CDP). It is an interesting (co)monomer for ROMP and especially vinyl-addition polymerization, where the insolubility of the resulting polymers poses serious problems to polymer analysis. C14-TD (yield: 13%, purity: >80%, mixture of isomers) was isolated as by-product.

    Google Scholar 

  22. Dias, E.L., Nguyen, S.T. and Grubbs, R.H. (1997) J. Am. Chem. Soc. 119, 3887.

    Article  CAS  Google Scholar 

  23. a) Lynn, D.M., Mohr, B. and Grubbs, R.H. (1998) Polym. Prepr. 39, 278. b) Lynn, D.M., Mohr, B. and Grubbs, R.H. (1998) J. Am. Chem. Soc. 120, 1627. c) Lynn, D.M, Dias, E.L., Grubbs, R.H. and Mohr, B.Patent WO 99/22865.

    CAS  Google Scholar 

  24. van der Schaaf, P.A., Mühlebach, A. and Hafner, A. Patent WO 99/00397.

    Google Scholar 

  25. Rinehart, R.E. (1969) J. Polym. Sci. Part C., 27, 7.

    Article  Google Scholar 

  26. Lynn, D.M., Kanaoka, S. and Grubbs, R.H. (1996) J. Am. Chem. Soc. 118, 784.

    Article  CAS  Google Scholar 

  27. In a typical example 431 g ethylene glycol (Merck, p.a.) was mixed in a 750 ml reaction vessel with mechanical stirring and N2 inlet/outlet with 2.66 g of a 50% solution of lauryl-dimethyl-benzylammonium chloride in water (cationic emulgator from Henkel) and 12.92 g hydroxypropyl cellulose (protecting colloide, Klucel E, Aqualon). The mixture was heated to 100°C for 5 min (to homogenize) and cooled down to R.T. and purged with nitrogen. Catalysts 1 (100 mg) and 8 (33 mg), dissolved in methylenechloride, were mixed with 33.33 g DCPD (Shell, 94%), containing 66 mg Irganox 1076 (antioxidant from Ciba SC). The catalyst/monomer mixture was than added to the ethyleneglycol/emulgator/protecting colloide mixture and stirred (ca. 700 rpm) 20 min at R.T., 1 h at 45°C, 2h at 65°C, 1h at 85°C and 2.5 h at 105°C. After cooling to R.T., the reaction mixture was filtered, washed with water, the solid polymer stirred 30 min with 300 ml water and again filtered. The poly(DCPD) powder was than dried 14 h at 50°C in vacuo (p<0.1 mbar). Yield: 27.3 g (82%) of a white powder. Elemental analysis: calc.: C 90.84% H 9.15%, found: C 90.11% H 9.33%.

    Google Scholar 

  28. Muehlebach, A., van der Schaaf, P.A., Hafner, A. and Setiabudi, F. (1998) J. Mol. Catal. 132, 181.

    Article  Google Scholar 

  29. Muehlebach, A. unpublished results.

    Google Scholar 

  30. Delia Martina, A., Hilborn, J.G. and Mühlebach, A. (2000) Macromolecules 33, 2916.

    Article  Google Scholar 

  31. The initiation step is probably much faster, because the active species has not to be generated in situ (by ligand exchange and oxidative addition).

    Google Scholar 

  32. Kurosawa, H., Emoto, M., Urabe, A., Miki, K. and Kasai, N. (1985) J. Am. Chem. Soc. 107, 8253.

    Article  CAS  Google Scholar 

  33. 1 was designed as cheap, latent catalyst for the polymerization of DCPD in the bulk. It is not suitable for the polymerization of functionalized cycloolefins in solution.

    Google Scholar 

  34. It turned out that the right choice of solvent is extremely important to obtain living ROMP. Chlorinated hydrocarbons are best (e.g. chlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, CH2Cl2, 1,1,2-trichloroethane; yields: >90%; PDI:<1.3), followed by esters (e.g. ethylacetate, γ-butyrolactone; yields: 70-80%; PDI: 1.2-1.5) and ethers (dimethoxyethane, THF; yields: <40%; PDI: 1.3-1.5). Ketones (e.g. methyl-ethylketone, cyclopentanone), amides (e.g. DMF, N-methyl-pyrrolidone) and sulfoxides (e.g. sulfolane, DMSO) gave no isolatable yields.

    Google Scholar 

  35. For a good review article see Schuster, M. and Blechert, S. (1997) Angew. Chem. 109, 2124.

    Article  Google Scholar 

  36. Nicolaou, K.C., He, Y., Vourloumis, D. and Vallberg, H. (1997) J. Am. Chem. Soc. 119, 7960.

    Article  Google Scholar 

  37. Schneider, M.F., Lucas, N., Velder, J. and Blechert, S. (1997) Angew. Chemie 109, 257.

    Article  Google Scholar 

  38. van der Schaaf, P.A., Mühlebach, A., Hafner, A. and Kolly, R. Patent WO 99/29701 (prio: 4.12.97).

    Google Scholar 

  39. Muehlebach, A., Prétôt, R. and van der Schaaf, P.A. manuscript in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Muhlebach, A., Van Der Schaaf, P.A., Hafner, A., Kolly, R., Rime, F., Kimer, HJ. (2002). Ruthenium Catalysts for Ring-Opening Metathesis Polymerization (ROMP) and Related Chemistry. In: Khosravi, E., Szymanska-Buzar, T. (eds) Ring Opening Metathesis Polymerisation and Related Chemistry. NATO Science Series, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0373-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0373-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0559-6

  • Online ISBN: 978-94-010-0373-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation