On the Origin of Photosynthetic Eukaryotic Cells: Cyanidium Caldarium as a “Bridge” Alga Between Prokaryotic Cyanobacteria and Eukaryotic Rhodophytes: Evidence from Environmental, Polysaccharide Biochemistry and Ultrastructural Studies

  • Conference paper
Origin of Life

Abstract

The similarities between Cyanidium caldarium and the rhodophytes are based on cellular ultrastructure and the site of storage glucan. In both the storage carbohydrate lies outside the chloroplast; their glucan is branched more than in the chlorophytes. The survival of Cyanidium in extreme-primeval atmosphere seems to be identical with the Cyanobacteria, as also the glucosyltransferases and the structure of storage glucan both algal types form. These isozymes of Cyanidium have structural and kinetic similarities with Cyanophyceae and rhodophytes. In line with all other observations, C.caldarium appears to be a transitional ‘bridge’ linking prokaryotic Cyanobacteria with the eukaryotic rhodophytes, this may obliterate the ‘discontinuity’ in the fossil record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klein, R.M. and Cronquist, A., The Quart. Rev. Biol. 42:105 (1967).

    Google Scholar 

  2. Brock, T.D., Thermophilie Microorganisms and Life at High Temperatures, Springer-Verlag, N.Y. 1978, pp 255–302.

    Google Scholar 

  3. Seckbach, J., Hammerman, I.S. and Hanania, J., Ann. N.Y. Acad. Sci., in press (1980).

    Google Scholar 

  4. Fukuda, I., A Possible Literature Survey of a Thermal Alga Cyanidium caldarium Geitler (I), Sci. Univer. Tokyo, 162 Japan, 1979.

    Google Scholar 

  5. Doemel, W.N., The Physiological Ecology of Cyanidium caldarium, Ph.D. dissertation, Indiana Univ. Bloomington, 1970.

    Google Scholar 

  6. Doemel, IV.N. and Brock T.D., J. of General Microbiol. 67:17 (1971).

    Google Scholar 

  7. Seckbach, J., Microbios 5:133 (1972).

    Google Scholar 

  8. Seckbach, J. and Ikan R., Plant Physiol. 49:457 (1972).

    Article  Google Scholar 

  9. Ikan, R. and Seckbach, J., Phytochem. 11:1077 (1972).

    Article  Google Scholar 

  10. Fredrick, J.F., Phytochem. 7:1573 (1968).

    Article  Google Scholar 

  11. Fredrick, J.F., Phytochem. 10:395 (1971).

    Article  Google Scholar 

  12. Fredrick, J.F., Plant & Cell Physiol. 17:317 (1976).

    Google Scholar 

  13. Fredrick, J.F., Ann. N.Y. Acad. Sci., in press (1980).

    Google Scholar 

  14. Hase, T., Wakabayashi, S., Wada, K., Matsubara, H., Jüttner, F., Rao, K.K., Fry I. and Hall, D.O., FEBS Letters 96:41 (1978).

    Article  Google Scholar 

  15. Allen, M.B., Arch. Mikrobiol. 32:270 (1959).

    Article  Google Scholar 

  16. Searcy, D.G., Stein, D.B. and Green, G.R., BioSystems 10:19 (1978).

    Article  Google Scholar 

  17. Seckbach, J. and Libby, W.F., Space Life Sci. 2:121 (1970).

    Article  Google Scholar 

  18. Seckbach, J., Limnol. and Oceanog. 16:567 (1971).

    Article  Google Scholar 

  19. Seckbach, J., Gross, H. and Nathan, M.B., Israel J. Bot. 20:84 (1971).

    Google Scholar 

  20. Seckbach, J., Israel J. Bot. 20:302 (1971).

    Google Scholar 

  21. Seckbach, J., Baker, F.A. and Shugarman, P.M., Nature 227:744 (1970).

    Article  Google Scholar 

  22. Stoecker, R.R., Space Life Sci. 3:42 (1971).

    Article  Google Scholar 

  23. Meeuse, B.J.D. and Kreger, D.R., Biochem. Biophys. Acta. 35:26 (1959).

    Article  Google Scholar 

  24. Fredrick, J.F., Phytochem. 14:1911 (1975).

    Article  Google Scholar 

  25. Leloir, L., DeFekete, M.A. and Cardini, C., J. Biol. Chem. 235:636 (1960).

    Google Scholar 

  26. Slabnik, E. and Frydman, R., Biochem. Biophys. Res. Com. 38:709 (1970).

    Article  Google Scholar 

  27. Lavintman, N., Arch. Biochem. Biophys. 116:1 (1966).

    Article  Google Scholar 

  28. Fredrick, J.F., Physiologia Plant. 24:55 (1971).

    Article  Google Scholar 

  29. Larner, J. and Sanger, F., J. Mol. Biol. 11:491 (1965).

    Article  Google Scholar 

  30. Nolan, C., Novoa, W., Krebs, E.G. and Fischer, E.H., Biochem. 3:542 (1964).

    Article  Google Scholar 

  31. Fredrick, J.F., Ann. N.Y. Acad. Sci. 210:254 (1973).

    Article  Google Scholar 

  32. Fredrick, J.F., Phyton 16:21 (1961).

    Google Scholar 

  33. Fredrick, J.F., Phytochem. 1:153 (1962).

    Article  Google Scholar 

  34. Negashima, H., Nakamura, S. and Nisizawa, K., Bot. Mag. Tokyo. 81:411 (1968).

    Google Scholar 

  35. Mangat, B.S., Phytochem. 18: 753 (1979).

    Article  Google Scholar 

  36. Fredrick, J.F., Ann. N.Y. Acad. Sci. 151:413 (1968).

    Article  Google Scholar 

  37. Fredrick, J.F., Phytochem. 7:931 (1968).

    Article  Google Scholar 

  38. Boyer, C. and Preiss, J., Biochem. Biophys. Res. Com. 80:169 (1978).

    Article  Google Scholar 

  39. Fredrick, J.F., J. Therm. Biol. 3:1 (1978).

    Article  Google Scholar 

  40. Fredrick, J.F., Phytochem. 19: in press (1980).

    Google Scholar 

  41. Edwards, M.R. and Mainwaring, J.D., in “31st Ann. Proc. E.M. Soc. Amer.” Arceneaux, C.J. (ed.) New Orleans, La. (1973).

    Google Scholar 

  42. Klein, R.M., Ann. N.Y. Acad. Sci. 175:623 (1970).

    Article  Google Scholar 

  43. Chapman, D.J., Nova Hedwigia 25:673 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 D. Reidel Publishing Company

About this paper

Cite this paper

Seckbach, J., Fredrick, J.F. (1981). On the Origin of Photosynthetic Eukaryotic Cells: Cyanidium Caldarium as a “Bridge” Alga Between Prokaryotic Cyanobacteria and Eukaryotic Rhodophytes: Evidence from Environmental, Polysaccharide Biochemistry and Ultrastructural Studies. In: Wolman, Y. (eds) Origin of Life. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8420-2_74

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8420-2_74

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-8422-6

  • Online ISBN: 978-94-009-8420-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation