New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures

  • Chapter
Plant community ecology: Papers in honor of Robert H. Whittaker

Part of the book series: Advances in vegetation science ((AIVS,volume 7))

  • 215 Accesses

Abstract

The conceptual framework of direct gradient analysis (DGA) is discussed in relation to the functional, factorial approach to vegetation. Both approaches use abstract simplified environment gradients with which to correlate vegetation response. Environmental scalars based on physical process models of environment and/ or known biological growth processes can be incorporated to make analyses less location specific. An example of an environmental scalar (radiation index) for converting aspect and slope measurements to the more biologically relevant radiation input at a site is given.

The problem of the shape of species response curves to environmental gradients is examined using a sample of 1 286 plots from eucalypt forest in southern New South Wales. An important conclusion is that skewed or bimodal response curves may be due to unsatisfactory distribution of observations and/or unrecognized environmental factors. The use of Generalized Linear Modelling (GLM) as a method for providing a statistical basis for DGA is presented. Analyses using GLM, and presence/absence data are presented for a range of eucalypt species (Eucalyptus rossii, E. dalrympleana, E. fastigata etc.). Successful prediction of species distributions (realized niches) can be achieved with mean annual temperature, mean annual rainfall, radiation index and geology. Quadratic terms are required in many cases, indicating bell-shaped response curves. The major variability associated with species niches is shown to be related to a limited number (4) of environmental factors. DGA with biologically relevant scalars and appropriate statistical methods is suitable for studying many problems of species’ realized niches and plant community composition.

Acknowledgements: We thank R. B. Good, J. Duggin, R. Florence and others for making their data available, K. Christenson & E. M. Adomeit for assistance with data analysis, M. F. Hutchinson & D. N. Body for their help with rainfall estimation and H. A. Nix for making his temperature estimates available, and P. Werner, L. F. M. Fresco, I. Noy-Meir, P. Cochrane, W. E. Westman, R.. K. Peet and C. R. Margules for comments on the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Austin, M. P., 1971. Role of regression analysis in ecology. In: Quantifying Ecology. Proc. Ecol. Soc. Aust. 6: 63–75.

    Google Scholar 

  • Austin, M. P., 1972. Models and analysis of descriptive vegetation data. In: Mathematical Models in Ecology. Proc. 12th Symp. Br. Ecol. Soc., pp. 61–86.

    Google Scholar 

  • Austin, M. P., 1976. On non-linear species response models in ordination. Vegetatio 33: 33–41.

    Article  Google Scholar 

  • Austin, M. P., 1978. Vegetation. In: M. P. Austin & K. D. Cocks, (gen. eds.). Land Use on the South Coast of New South Wales, Vol. 2, pp. 44–67. CSIRO, Melbourne.

    Google Scholar 

  • Austin, M. P., 1980. Searching for a model for vegetation analysis. Vegetatio 43: 11–21.

    Article  Google Scholar 

  • Austin, M. P. & Beibin, L., 1981. An analysis of succession along an environmental gradient using data from a lawn. Vegetatio 46: 19–30.

    Article  Google Scholar 

  • Austin, M. P. & Cunningham, R. B., 1981. Observational analysis of environmental gradients. Proc. Ecol. Soc. Aust. 11: 109–119.

    Google Scholar 

  • Austin, M. P. & Cunningham, R. B., 1981. Observational analysis of environmental gradients. Proc. Ecol. Soc. Aust. 11: 109–119.

    Google Scholar 

  • Bakuzis, E. V. & Hansen, H. L., 1965. Balsam Fir. Univ. Minnesota Press, Minneapolis.

    Google Scholar 

  • Crocker, R. L., 1952. Soil genesis and the pedogenic factors. Quart. Rev. Biol. 27: 139.

    Article  PubMed  CAS  Google Scholar 

  • CSIRO, Division of Forest Research, 1980. Forest Tree Leaflets. 4 vols. CSIRO, Melbourne.

    Google Scholar 

  • Ellenberg, H., 1950. Unkrautgemeinschaften als Zeiger für Klima und Boden. Ulmer, Stuttgart.

    Google Scholar 

  • Fitzpatrick, E. & Nix, H. N., 1970. The climatic factor in Australian grassland ecology. In: R. M. Moore, (ed.). Australian Grasslands Ch. 1, pp. 3–26. Australian National University Press, Canberra.

    Google Scholar 

  • Fleming, P. M., 1971. The calculation of clear day solar radiation on any surface. Paper presented at Aust. Inst. Refrig. Air. Cond. Heating Conference, Perth, May 1971. Mimeo. 24 pp.

    Google Scholar 

  • Fleming, P. M. & Austin, M. P., 1983. Notes on a radiation index for use in studies of aspect effects on radiation cli¬mates. CSIRO Division of Water and Land Resources Tech. Memo (in prep.).

    Google Scholar 

  • Gauch, H. G. & Whittaker, R. H., 1972. Coenocline simulation. Ecology 53: 446–51.

    Article  Google Scholar 

  • Hall, N., Johnston, G. M. & Chippendale, G. M., 1970. Forest Trees of Australia. Australian Government Publishing Service Canberra. 334 pp.

    Google Scholar 

  • Harper, J. L., 1982. After description. In: E. I. Newman (ed.) British Ecological Society, Special Publications Series, 1, pp. 11–25.

    Google Scholar 

  • Hutchinson, M. F., 1983. Surface fitting and contour drawing programs for small to large data sets (in prep.).

    Google Scholar 

  • Hutchinson, M. F., 1983. Surface fitting and contour drawing programs for small to large data sets (in prep.).

    Google Scholar 

  • Jenny, Hans, 1941. Factors of Soil Formation: a system of quantitative pedology. McGraw Hill, New York. 281 pp.

    Google Scholar 

  • Lee, R., 1963. Evaluation of solar beam irradiation as a climatic parameter of mountain watersheds. Colo. State Univ. Hydrol. Papers 2: 1–50.

    Google Scholar 

  • Loucks, O. L., 1962. Ordinating forest communities by means of environmental scalars and phytosociological indices. Ecol. Monogr. 32: 137–66.

    Article  Google Scholar 

  • Maarel, E. van der, 1976. On the establishment of plant com¬munity boundaries. Ber. Deutsch. Bot. Ges. 89: 415–43.

    Google Scholar 

  • Major, J., 1951. A functional, factorial approach to plant ecology. Ecology 32: 392–412.

    Article  Google Scholar 

  • Mueller-Dombois, D. & Ellenberg, H., 1974. Aims and methods of Vegetation Ecology. J. Wiley & Sons, New York. 547 pp.

    Google Scholar 

  • Neider, J. A. & Wedderburn, R. W. M., 1972. Generalized linear models. J. R. Statist. Soc. A. 135: 370–84.

    Article  Google Scholar 

  • Peet, R. K., 1978. Latitudinal variation in southern Rocky mountain forests. J. Biogeogr. 5: 275–89.

    Article  Google Scholar 

  • Perring, F., 1958. A theoretical approach to a study of chalk grassland. J. Ecol. 46: 665–79.

    Article  Google Scholar 

  • Perring, F., 1959. Topographical gradients of chalk grassland. J. Ecol. 47: 447–81.

    Article  Google Scholar 

  • Perring, F., 1960. Climatic gradients of chalk grassland. J. Ecol. 48: 415–42.

    Article  CAS  Google Scholar 

  • Waring, R. H. & Major, J., 1964. Some vegetation of the California coastal redwood region in relation to gradients of moisture, nutrients light and temperature. Ecol. Monogr. 34: 167–215.

    Google Scholar 

  • Waring, R. H., Reed, K. L. & Emmingham, W. H., 1972. An environmental grid for classifying coniferous forest ecosystems. In: J. F. Franklin, L. J. Dempster & R. H. Waring (eds.). Research on coniferous forest ecosystems: First year progress in the coniferous forest biome, US/ IBP, pp. 79–92. USDA Forest Service, Pacific Northwest Forest and Range Exp. Station.

    Google Scholar 

  • Westman, W. E. & Peet, R. K., 1982. Robert H. Whittaker (1920–1980): The man and his work. Vegetatio 48: 97–122.

    Article  Google Scholar 

  • Whittaker, R. H., 1951. A criticism of the plant association and climatic climax concepts. Northwest Sei. 26: 17–31.

    Google Scholar 

  • Whittaker, R. H., 1954. Plant populations and the basis of plant indication (German summ.) Angew. Pflanzensoziol. (Wien), Festschr. Aichinger 1: 183–206.

    Google Scholar 

  • Whittaker, R. H., 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.

    Article  Google Scholar 

  • Whittaker, R. H., 1960. Vegetation of the Siskiyon Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.

    Article  Google Scholar 

  • Whittaker, R. H., 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–64.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, R. H., 1978. Direct gradient analysis. In: R. H. Whittaker, (ed.). Ordination of Plant Communities, pp. 9–50. Handbook of vegetation science 5. Junk, The Hague.

    Google Scholar 

  • Whittaker, R. H. & Niering, W. A., 1965. Vegetation of the Santa Catalina Mountains, Arizona: A gradient analysis of the south slope. Ecology 46: 429–52.

    Google Scholar 

  • Whittaker, R. H. & Niering, W. A., 1975. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production and diversity along the elevation gradient. Ecology 56: 771–90.

    Article  Google Scholar 

  • Zobel, D. B., McKee, A. & Hawk, G. M., 1976. Relationships of environment to composition, structure and diversity of forest communities of the central western Cascades of Oregon. Ecol. Monogr. 46: 135–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. K. Peet

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Austin, M.P., Cunningham, R.B., Fleming, P.M. (1985). New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. In: Peet, R.K. (eds) Plant community ecology: Papers in honor of Robert H. Whittaker. Advances in vegetation science, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5526-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5526-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8939-5

  • Online ISBN: 978-94-009-5526-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation