Abstract

Postnatal development can affect the disposition and pharmacokinetics of drugs in man and animals. Factors such as gastric pH, gastrointestinal motility, mucosal absorbing area, microbial population and milk feeding are major determinants in the absorption process of drugs in the neonate. Postnatal evolution in body composition can lead to important alterations in distribution pattern of drugs in newborns. Differences in maturity at birth and in the rate of postnatal development of the renal and hepatic functions are present in the various species. Therefore, important variations in pharmacokinetics and pharmacodynamics between mammalian newborns can be expected for the same drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Assael, B.M. (1982). Pharmacokinetics and drug distribution during postnatal development. Pharmacol. Ther. 18: 159–197.

    Article  PubMed  CAS  Google Scholar 

  2. Baggot, J.D. (1977). Principles of Drug Disposition in Domestic Animals. Philadelphia: U.B. Saunders.

    Google Scholar 

  3. Baggot, J.D. and Short, C.R. (1984). Drug disposition in the neonatal animal, with particular reference to the foal. Equine Vet. J. 16 (4): 364–367.

    Article  PubMed  CAS  Google Scholar 

  4. Clarke, C.R., Short, C.R., Hsu, R. and Baggot, J.D. (1985). Pharmacokinetics of gentamicin in the calf: developmental changes. Am. J. Vet. Res. 46: 2461–2466.

    PubMed  CAS  Google Scholar 

  5. De Backer, P. and Bogaert, M.G. (1963). Drug bio-availability in the develo** ruminant. In: Ruckebush, Y., Toutain, P.L. and Koritz, G.D. (eds). Veterinary Pharmacology and Toxicology, pp. 133–140. Lancaster: MTP Press L.

    Google Scholar 

  6. De Backer, P., Debackere, M., De Corte-Baeten, K. (1978). Plasma levels of chloramphenicol after oral administration in calves during the first weeks of life. J. Vet. Pharmacol. Ther. 1: 135–140.

    Article  Google Scholar 

  7. De Backer, P., Belpaire, P.M., Bogaert, M.G. and Debackere, M. (1982). Pharmacokinetics of sulfamerazine and antipyrine in neonatal and young lambs. Am. J. Vet. Res. 43: 1744–1751.

    PubMed  Google Scholar 

  8. Friis, C. (1983). Postnatal development of renal function in goats. In: Ruckebush, Y., Toutain, P.L. and Koritz, G.D. (eds). Veterinary Pharmacology and Toxicology, pp. 57–62. Lancaster: MTP Press L.

    Google Scholar 

  9. Friis, C., Gyrd-Hansen, N., Nielsen, P., Olsen, C.E. and Rasmussen, F. (1984). Pharmacokinetics and metabolism of su1phadiazine in neonatal and young pigs. Acta Pharmacol. Toxicol. 54: 821–826.

    Google Scholar 

  10. Groothuis, D.G. (1983). De f armacokinetiek bij vleeskalveren en de activiteit van antibacterie1e middelen met betrekking tot salmonella dublin infecties. Doctoraal proefschrift. Utrecht.

    Google Scholar 

  11. Gyrd-Hansen, H., Friis, C. Nielsen, P. and Rasmussen, F. (1984). Metabolism of trimethoprim in neonatal and young pigs: comparative in vivo and in vitro studies. Acta Pharmacol. Toxicol. 55: 402–409.

    Article  CAS  Google Scholar 

  12. Hill. K.J. (1968). Abomasal function. In: Handbook of Physiology. A1imentary Canal, vol. V. pp. 2747–2759. Baltimore: Uilliams and Wilkins.

    Google Scholar 

  13. Leat. W.M.F. (1970). Carbohydrate and lipid metabolism in the ruminant during postnatal development. In: Phillipson. A.T. (ed.). Physiology of Digestion and Metabolism in the Ruminant. pp.211–222. Neucast1e-upon-Tyne: Oriel Press.

    Google Scholar 

  14. Mannering. G.J. (1985). Drug metabolism in the newborn. Fed. Proc. 44: 2302–2308.

    PubMed  Google Scholar 

  15. Morselli. P.L.. Franco-Morselli. R. and Bossi. L. (1980). Clinical pharmacokinetics in newborn and infants. Age related differences and therapeutic implications. Clin. Pharmacokinet. 5: 485–527.

    Article  PubMed  CAS  Google Scholar 

  16. Nielsen. P. and Rasmussen. F. (1976). Influence of age on trimethoprim and sulfadoxone in goats. Acta Pharmacol. Toxicol. 38: 113–119.

    Google Scholar 

  17. Nielsen. P., Romvary. A. and Rasmussen. F. (1978). Sulfadoxine and trimethoprim in goats and cows: absorption fraction. half-lives and the degrading effect of the ruminal flora. J. Vet. Pharmacol. Ther. 1: 37–46.

    Article  CAS  Google Scholar 

  18. Nouws. J.F.M., Vree. T.B.. Baakman. M. and Tijhuis. M. (1983). Effect of age on the acetylation and deacety1ation reactions of su1phadimidine and N4-acetylsulphadimidine in calves. J. Vet. Pharmacol. Ther. 6: 13–22.

    Article  PubMed  CAS  Google Scholar 

  19. Nouws, J.F.M., Vree, T.B.. Baakman. M.. Driessens. F.. Breukink. H.J. and Meviu. D. (1986). Age and dosage dependency in the plasma disposition and the renal clearance of sulfadimidine and its N4-acetyl and hydroxy metabolites in calves and cows. Am. J. Vet. Res. 47: 642–649.

    PubMed  CAS  Google Scholar 

  20. Ruckebush. Y. (1983). Perinatal pharmacology in ruminant models. In: Ruckebush, Y., Toutain, P.L. and Koritz. G.D. (eds). Veterinary Pharmacology and Toxicology, pp. 3–22. Lancaster: MTP Press L.

    Google Scholar 

  21. Short, C.R. (1983). Developmental patterns of penicillin G excretion. In: Ruckebush, Y., Toutain. P.L. and Koritz. G.D. (eds). Veterinary Pharmacology and Toxicology, pp. 63–72. Lancaster: MTP Press L.

    Google Scholar 

  22. Short. C.R. (1984). Drug disposition in neonatal animals. J. Am. Vet. Med. Assoc. 184: 1161–1162.

    PubMed  CAS  Google Scholar 

  23. Short. C.R. and Clarke, C.R. (1984). Calculation of dosage regimens of antimicrobial drugs for the neonatal patient. J. Am. Vet. Med. Assoc. 185 (10): 1088–1093.

    PubMed  CAS  Google Scholar 

  24. Silverio. J. and Poole, J.U. (1973). Serum concentrations of ampicillin in newborn infants after oral administration. Pediatrics 51: 578–580.

    PubMed  CAS  Google Scholar 

  25. Svendsen, O. (1976). Pharmacokinetics of hexabarbital, sulphadimidine and chloramphenicol in neonatal and young pigs. Acta Vet. Scand. 17: 1–14.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 MTP Press Limited

About this chapter

Cite this chapter

De Backer, P. (1986). Comparative neonatal pharmacokinetics. In: Van Miert, A.S.J.P.A.M., Bogaert, M.G., Debackere, M. (eds) Comparative Veterinary Pharmacology, Toxicology and Theraphy. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4153-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4153-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8343-0

  • Online ISBN: 978-94-009-4153-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation