Transcription factories and chromosome structure

  • Chapter
Chromosomes Today

Abstract

Condensation is the hallmark of mitosis. Why, then, does the chromatin fibre not condense into the most compact form, a sphere? Why are chromatids cylindrical, and not spherical? What are the basic principles that determine the cylindrical shape?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Armstrong, P.B. (1989) Cell sorting out; the self-assembly of tissues in vitro. Critical Reviews in Biochemistry and Molecular Biology, 24, 119–49.

    Article  PubMed  CAS  Google Scholar 

  • Bak, A.L., Zeuthen, J. and Crick, F.H.C (1977) Higher-order structure of the mitotic chromosomes. Proceedings of the National Academy of Science USA, 74, 1595–9.

    Article  CAS  Google Scholar 

  • Boy de la Tour, E. and Laemmli, U.K. (1988) The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell, 55, 937–44.

    Article  PubMed  CAS  Google Scholar 

  • Cook, P.R. (1988) The nucleoskeleton: artefact, passive framework or active site? Journal of Cell Science, 90, 1–6.

    PubMed  Google Scholar 

  • Cook, P.R. (1995) A chromomeric model for nuclear and chromosome structure. Journal of Cell Science, 108, 2927–35.

    PubMed  CAS  Google Scholar 

  • DuPraw, E.J. (1966) Evidence for a ‘folded-fibre’ organization in human chromosomes. Nature, 209, 577–81.

    Article  PubMed  CAS  Google Scholar 

  • Gerace, L. and Burke, B. (1988) Functional organization of the nuclear envelope. Annual Review of Cell Biology, 4, 335–74.

    Article  PubMed  CAS  Google Scholar 

  • Haaf, T., Hayman, D.L. and Schmid, M. (1991) Quantitative determination of rDNA transcription units in vertebrate cells. Experimental Cell Research, 193, 78–86.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Verdun, D. and Gautier, T. (1994) The chromosome periphery during mitosis. BioEssays, 16, 179–85.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M. and Sedat, J.W. (1987) Three-dimensional organization of Drosophila melanogaster interphase nuclei. I. Tissue-specific aspects of polytene nuclear architecture. Journal of Cell Biology, 104, 1455–70.

    Article  PubMed  CAS  Google Scholar 

  • Horowitz, R.A., Agard, D.A, Sedat, J.W. and Woodcock, C.L. (1994) The three-dimensional architecture of chromatin in situ: electron tomography reveals fibres composed of a continuously variable zig-zag nucleosomal ribbon. Journal of Cell Biology, 125, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Hozák, P., Cook, P.R., Schöfer, C. et al. (1994a) Site of transcription of ribosomal RNA and intra-nucleolar structure in HeLa cells. Journal of Cell Science, 107, 639–48.

    PubMed  Google Scholar 

  • Hozák, P., Hassan, A.B., Jackson, D.A. and Cook, P.R. (1993) Visualization of replication factories attached to a nucleoskeleton. Cell, 73, 361–73.

    Article  PubMed  Google Scholar 

  • Hozák, P., Jackson, D.A. and Cook, P.R. (1994b) Replication factories and nuclear bodies: the ultrastructural characterization of replication sites during the cell cycle. Journal of Cell Science, 107, 2191–202.

    PubMed  Google Scholar 

  • Hozák, P., Sasseville, A. M-J., Raymond, R. and Cook. P.R. (1995) Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. Journal of Cell Science, 108, 635–44.

    PubMed  Google Scholar 

  • Jackson, D.A. and Cook, P.R. (1985) Transcription occurs at a nucleoskeleton. EMBO Journal, 4, 919–25.

    PubMed  CAS  Google Scholar 

  • Jackson, D.A. and Cook, P.R. (1988) Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat. EMBO Journal, 7, 3667–77.

    PubMed  CAS  Google Scholar 

  • Jackson, D.A. and Cook, P.R. (1993) Transcriptionally-active minichromosomes are attached transiently in nuclei through transcription units. Journal of Cell Science, 105, 1143–50.

    PubMed  CAS  Google Scholar 

  • Jackson, D.A., Dickinson, P. and Cook, P.R. (1990) The size of chromatin loops in HeLa cells. EMBO Journal, 9, 567–71.

    PubMed  CAS  Google Scholar 

  • Jackson, D.A., Hassan, A.B., Errington, R.J. and Cook, P.R. (1993) Visualization of focal sites of transcription within human nuclei. EMBO Journal, 12, 1059–65.

    PubMed  CAS  Google Scholar 

  • Jackson, D.A., Yuan, J. and Cook, P.R. (1988) A gentle method for preparing cyto- and nucleo-skeletons and associated chromatin. Journal of Cell Science, 90, 365–78.

    PubMed  CAS  Google Scholar 

  • Jordan, E.G. and McGovern, J.H. (1981) The quantitative relationship of the fibrillar centres and other nucleolar components to changes in growth conditions, serum deprivation and low doses of actinomycin D in cultured diploid human fibroblasts (strain MRC-5). Journal of Cell Science, 52, 373–89.

    PubMed  CAS  Google Scholar 

  • Krawiec, S. and Riley, M. (1990) Organization of the bacterial chromosome. Microbiological Reviews, 54, 502–39.

    PubMed  CAS  Google Scholar 

  • Manton, I. (1950) The spiral structure of chromosomes. Biological Reviews, 25, 486–508.

    Article  Google Scholar 

  • Manuelidis, L. (1990). A view of interphase chromosomes. Science, 250, 1533–40.

    Article  PubMed  CAS  Google Scholar 

  • McDowall, A.W., Smith, J.M. and Dubochet, J. (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO Journal, 5, 1395–986.

    PubMed  CAS  Google Scholar 

  • McManus, J., Perry, P., Sumner, A.T. et al (1994) Unusual chromosome structure of fission yeast DNA in mouse cells. Journal of Cell Science, 107, 469–86.

    PubMed  CAS  Google Scholar 

  • Nakamura, H., Morita, T. and Sato, C. (1986) Structural organisation of replicon domains during DNA synthetic phase in the mammalian nucleus. Experimental Cell Research, 165, 291–7.

    Article  PubMed  CAS  Google Scholar 

  • Ohnuki, Y. (1968) Structure of chromosomes. I. Morphological studies of the spiral structure of human somatic chromosomes. Chromosoma, 25, 402–28.

    Article  PubMed  CAS  Google Scholar 

  • Paulson, J.R. and Laemmli, U.K. (1977) The structure of histone-depleted metaphase chromosomes. Cell, 12, 817–28.

    Article  PubMed  CAS  Google Scholar 

  • Rattner, J.B. (1992) Integrating chromosome structure with function. Chromosoma, 101, 259–64.

    Article  PubMed  CAS  Google Scholar 

  • Rattner, J.B. and Lin, C.C. (1985) Radial loops and helical coils coexist in metaphase chromosomes. Cell, 42, 291–6.

    Article  PubMed  CAS  Google Scholar 

  • Robert-Fortel, I., Junéra, H.R., Géraud, G. and Hernandez-Verdun, D. (1993) Three-dimensional organization of the ribosomal genes and Ag-NOR proteins during interphase and mitosis in PtK1 cells studied by confocal microscopy. Chromosoma, 102, 146–57.

    Article  PubMed  CAS  Google Scholar 

  • Roussel, P., Andre, C, Masson, C. et al. (1993) Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. Journal of Cell Science, 104, 327–37.

    PubMed  CAS  Google Scholar 

  • Scheer, U. and Rose, K.M. (1984) Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proceedings of the National Academy of Science USA, 81, 1431–5.

    Article  CAS  Google Scholar 

  • Spector, D.L. (1993) Macromolecular domains within the cell nucleus. Annual Review of Cell Biology, 9, 265–315.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, M.S. (1964) The problem of adhesive selectivity in cellular interactions, in Cellular membranes in development (ed M. Locke) Academic Press, New York, pp. 321–66.

    Google Scholar 

  • Steinberg, M.S. and Takeichi, M. (1994) Experimental specification of cell sorting, tissue spreading, and spatial patterning by quantitative differences in cadherin expression. Proceedings of the National Academy of Science USA, 91, 206–9.

    Article  CAS  Google Scholar 

  • Townes, P.L. and Holtfreter, J. (1955) Directed movements and selective adhesion of embryonic amphibian cells. Journal of Experimental Zoology, 128, 53–120.

    Article  Google Scholar 

  • Van Holde, K. and Zlatanova, J. (1995) Chromatin higher order structure: chasing a mirage? Journal Biological Chemistry, 270, 8373–6.

    Article  Google Scholar 

  • Wansink, D.G., Schul, W., van der Kraan, I. et al. (1993). Fluorescent labelling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. Journal of Cell Biology, 122, 283–93.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, E.B. (1928) The cell in development and heredity, 3rd edition, pp. 906–11. Macmillan, Inc., New York.

    Google Scholar 

  • Yoda, K., Kitagawa, K., Masumoto, H. et al. (1992) A human centromere protein, CENP-B, has a DNA binding domain containing four potential α helices at the NH2 terminus, which is separable from dimerizing activity. Journal of Cell Biology, 119, 1413–27.

    Article  PubMed  CAS  Google Scholar 

  • Zatsepina, O.V., Polyakov, V.Y., Chentsov, Y.S. (1983) Chromonema and chromomere: structural units of mitotic and interphase chromosomes. Chromosoma, 88, 91–7.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 The Organizing Committee of the 12th International Chromosome Conference, Madrid, Spain

About this chapter

Cite this chapter

Pombo, A., McManus, J., Hughes, T.A., Iborra, F.J., Jackson, D.A., Cook, P.R. (1997). Transcription factories and chromosome structure. In: Henriques-Gil, N., Parker, J.S., Puertas, M.J. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1537-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1537-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7186-4

  • Online ISBN: 978-94-009-1537-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation