Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 18))

  • 1005 Accesses

Abstract

The incidence of brain metastasis is increasing, however, little is known about the molecular mechanisms responsible for metastasis of peripheral tumor cells and their colonization of the brain. After tumor cells metastasize to the brain, they encounter a completely different microenvironment from that in the periphery. The interactions between tumor cells and glial cells, mainly astrocytes and microglia, including soluble factors released from these cells, are still under investigation. However this knowledge will contribute to understanding the mechanisms of cell-cell interactions in the brain and identify possible therapeutic targets on resident brain cells that could effect brain metastasis formation and treatment. In addition to the complex interactions between metastatic tumor cells and the brain’s resident cells, factors from endothelial cells and endogenous plasma factors also affect the blood-brain barrier and may change tumor cell characteristics. Therefore the totality of the brain microenvironment must be considered. The cell types and soluble factors that contribute to the brain microenvironment surrounding metastatic tumor cells are discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fidler IJ, Yano S, Zhang RD et al (2002) The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 3(1):53–57

    Article  PubMed  CAS  Google Scholar 

  2. Aloisi F, Ria F, Adorini L (2000) Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 21(3):141–147

    Article  PubMed  CAS  Google Scholar 

  3. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    Article  PubMed  CAS  Google Scholar 

  4. Fitzgerald DP, Palmieri D, Hua E et al (2008) Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis 25(7):799–810

    Article  PubMed  Google Scholar 

  5. Lorger M (2012) Tumor microenvironment in the brain. Cancer 4(1):218–243

    Article  Google Scholar 

  6. Heyn C, Ronald JA, Ramadan SS et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010

    Article  PubMed  Google Scholar 

  7. Farber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Brain Res Rev 48(2):133–143

    Article  PubMed  Google Scholar 

  8. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81(3):302–313

    Article  PubMed  CAS  Google Scholar 

  9. Kreutzberg GW. (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  PubMed  CAS  Google Scholar 

  10. Perry VH, Matyszak MK, Fearn S (1993) Altered antigen expression of microglia in the aged rodent CNS. Glia 7(1):60–67

    Article  PubMed  CAS  Google Scholar 

  11. Santambrogio L, Belyanskaya SL, Fischer FR et al (2001) Developmental plasticity of CNS microglia. Proc Natl Acad Sci USA 98(11):6295–6300

    Article  PubMed  CAS  Google Scholar 

  12. Morantz RA, Wood GW, Foster M et al (1979) Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J Neurosurg 50(3):305–311

    Article  PubMed  CAS  Google Scholar 

  13. Kettenmann H, Hanisch UK, Noda M et al (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  PubMed  CAS  Google Scholar 

  14. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  PubMed  CAS  Google Scholar 

  15. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  PubMed  CAS  Google Scholar 

  16. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40(2):140–155

    Article  PubMed  Google Scholar 

  17. Noda M, Seike T, Fujita K et al (2009) The role of immune cells in brain metastasis of lung cancer cells and neuron-tumor cell interaction. Ross Fiziol Zh Im I M Sechenova 95(12):1386–1396

    PubMed  CAS  Google Scholar 

  18. Miller RH, Ffrench-Constant C, Raff MC (1989) The macroglial cells of the rat optic nerve. Annu Rev Neurosci 12:517–534

    Article  PubMed  CAS  Google Scholar 

  19. Seike T, Fujita K, Yamakawa Y et al (2011) Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin Exp Metastasis 28(1):13–25

    Article  PubMed  CAS  Google Scholar 

  20. Zhang M, Olsson Y (1995) Reactions of astrocytes and microglial cells around hematogenous metastases of the human brain. Expression of endothelin-like immunoreactivity in reactive astrocytes and activation of microglial cells. J Neurol Sci 134(1–2):26–32

    Article  PubMed  CAS  Google Scholar 

  21. Kettenmann H, Ransom BR (2005) Neuroglia, Oxford University Press, Oxford

    Google Scholar 

  22. Kang SH, Fukaya M, Yang JK et al (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681

    Article  PubMed  CAS  Google Scholar 

  23. Winkler EA, Bell RD, Zlokovic BV (2010) Pericyte-specific expression of PDGF beta ­receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener 5:32

    Article  PubMed  Google Scholar 

  24. Dore-Duffy P, Cleary K (2011) Morphology and properties of pericytes. Methods Mol Biol 686:49–68

    Article  PubMed  CAS  Google Scholar 

  25. Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58(1):1–10

    Article  PubMed  Google Scholar 

  26. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405

    Article  PubMed  CAS  Google Scholar 

  27. Quaegebeur A, Segura I, Carmeliet P (2010) Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron 68(3):321–323

    Article  PubMed  CAS  Google Scholar 

  28. **an X, Hakansson J, Stahlberg A et al (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116(3):642–651

    Article  PubMed  CAS  Google Scholar 

  29. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  PubMed  CAS  Google Scholar 

  30. Chu JE, Allan AL (2012) The role of cancer stem cells in the organ tropism of breast cancer metastasis: a mechanistic balance between the “seed” and the “soil”? Int J Breast Cancer 2012:209748

    PubMed  Google Scholar 

  31. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69–82

    Article  PubMed  CAS  Google Scholar 

  32. Fitzgerald DP, Subramanian P, Deshpande M et al (2012) Opposing effects of pigment epithelium-derived factor on breast cancer cell versus neuronal survival: implication for brain metastasis and metastasis-induced brain damage. Cancer Res 72(1):144–153

    Article  PubMed  CAS  Google Scholar 

  33. Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176(6):2958–2971

    Article  PubMed  Google Scholar 

  34. Giavazzi R, Garofalo A, Bani MR et al (1990) Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. Cancer Res 50(15):4771–4775

    PubMed  CAS  Google Scholar 

  35. Vidal-Vanaclocha F, Alvarez A, Asumendi A et al (1996) Interleukin 1 (IL-1)-dependent melanoma hepatic metastasis in vivo; increased endothelial adherence by IL-1-induced mannose receptors and growth factor production in vitro. J Natl Cancer Inst 88(3–4):198–205

    Article  PubMed  CAS  Google Scholar 

  36. Vidal-Vanaclocha F, Amezaga C, Asumendi A et al (1994) Interleukin-1 receptor blockade reduces the number and size of murine B16 melanoma hepatic metastases. Cancer Res 54(10):2667–2672

    PubMed  CAS  Google Scholar 

  37. Sierra A, Price JE, Garcia-Ramirez M et al (1997) Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Invest 77(4):357–368

    PubMed  CAS  Google Scholar 

  38. Marchetti D, Denkins Y, Reiland J et al (2003) Brain-metastatic melanoma: a neurotrophic perspective. Pathol Oncol Res 9(3):147–158

    Article  PubMed  CAS  Google Scholar 

  39. Denkins Y, Reiland J, Roy M et al (2004) Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol 6(2):154–165

    Article  PubMed  CAS  Google Scholar 

  40. Aloisi F, Care A, Borsellino G et al (1992) Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J Immunol 149(7):2358–2366

    PubMed  CAS  Google Scholar 

  41. Hertz L, McFarlin DE, Waksman BH (1990) Astrocytes: auxiliary cells for immune responses in the central nervous system? Immunol Today 11(8):265–268

    Article  PubMed  CAS  Google Scholar 

  42. Lee SC, Liu W, Dickson DW et al (1993) Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 150(7):2659–2667

    PubMed  CAS  Google Scholar 

  43. Wang FW, Jia DY, Du ZH et al (2009) Roles of activated astrocytes in bone marrow stromal cell proliferation and differentiation. Neuroscience 160(2):319–329

    Article  PubMed  CAS  Google Scholar 

  44. Kim SJ, Kim JS, Park ES et al (2011) Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 13(3):286–298

    PubMed  CAS  Google Scholar 

  45. Iravani MM, Sadeghian M, Leung CC et al (2012) Lipopolysaccharide-induced nigral inflammation leads to increased IL-1beta tissue content and expression of astrocytic glial cell line-derived neurotrophic factor. Neurosci Lett 510(2):138–142

    Article  PubMed  CAS  Google Scholar 

  46. Zhang H, Gu YT, Xue YX (2007) Bradykinin-induced blood-brain tumor barrier permeability increase is mediated by adenosine 5’-triphosphate-sensitive potassium channel. Brain Res 1144:33–41

    Article  PubMed  CAS  Google Scholar 

  47. Qin LJ, Gu YT, Zhang H et al (2009) Bradykinin-induced blood-tumor barrier opening is mediated by tumor necrosis factor-alpha. Neurosci Lett 450(2):172–175

    Article  PubMed  CAS  Google Scholar 

  48. Ma T, Liu L, Wang P et al (2012) Evidence for involvement of ROCK signaling in bradykinin-induced increase in murine blood-tumor barrier permeability. J Neurooncol 106(2):291–301

    Article  PubMed  CAS  Google Scholar 

  49. Montana V, Sontheimer H (2011) Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci 31(13):4858–4867

    Article  PubMed  CAS  Google Scholar 

  50. Palmieri D, Fitzgerald D, Shreeve SM et al (2009) Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res 7(9):1438–1445

    Article  PubMed  CAS  Google Scholar 

  51. Park ES, Kim SJ, Kim SW et al (2011) Cross-species hybridization of microarrays for studying tumor transcriptome of brain metastasis. Proc Natl Acad Sci USA 108(42):17456–17461

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Grants-in Aid for Scientific Research from the Japanese Society for Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mami Noda Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Noda, M. (2012). The Brain Microenvironment. In: Palmieri, D. (eds) Central Nervous System Metastasis, the Biological Basis and Clinical Considerations. Cancer Metastasis - Biology and Treatment, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5291-7_3

Download citation

Publish with us

Policies and ethics

Navigation