Abstract

An understanding of the molecular biology of brain metastasis development is critical to the development of new preventatives and therapeutics. Our current understanding is largely based on functional validation studies of candidate genes in animal models. These candidates were either identified by genomic profiling of clinical specimens or brain-tropic cell lines, or were suspected factors in key steps of the brain metastatic process. This chapter provides a summary of current in vivo brain metastasis models, explores the key steps of brain metastasis development and discusses the experimental evidence that links various genes functionally to brain metastatic progression. Animal models have been developed for lung and breast carcinoma, and melanoma metastasis to the brain. Most commonly these models involve hematogenous metastasis from carotid artery or left cardiac ventricle injection, but implantation and spontaneous animal models have also been reported. The steps involved in brain metastatic spread include extravasation from the brain vasculature, tumor cell dormancy, and outgrowth in the brain microenvironment. The brain parenchyma is altered by a potent neuroinflammatory response, involving activated microglia and astrocytes that accompanies brain metastasis development both clinically and in animal models. Alterations in the expression levels of individual genes have demonstrated functional roles in brain metastasis development in animal models. This includes genes driving metastatic spread in general, for which functions in brain metastatic spread have been demonstrated, as well as those who appear to have brain metastasis specific roles. Genes involved in cell signaling, angiogenesis, microenvironment modulation, cell adhesion and invasion as well as multiple transcription factors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eichler AF, Chung E, Kodack DP et al (2011) The biology of brain metastases-translation to new therapies. Nat Rev Clin Oncol 8(6):344–356

    PubMed  CAS  Google Scholar 

  2. Cranmer LD, Trevor KT, Bandlamuri S et al (2005) Rodent models of brain metastasis in melanoma. Melanoma Res 15(5):325–356

    Article  PubMed  Google Scholar 

  3. Lockman PR, Mittapalli RK, Taskar KS et al (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678

    Article  CAS  Google Scholar 

  4. Zhang RD, Fidler IJ, Price JE (1991) Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. Invasion Metastasis 11(4):204–215

    PubMed  CAS  Google Scholar 

  5. Palmieri D, Bronder JL, Herring JM et al (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67(9):4190–4198

    Article  PubMed  CAS  Google Scholar 

  6. Cruz-Munoz W, Man S, Xu P et al (2008) Development of a preclinical model of spontaneous human melanoma central nervous system metastasis. Cancer Res 68(12):4500–4505

    Article  PubMed  CAS  Google Scholar 

  7. Alterman AL, Stackpole CW (1989) B16 melanoma spontaneous brain metastasis: occurrence and development within leptomeninges blood vessels. Clin Exp Metastasis 7(1):15–23

    Article  PubMed  CAS  Google Scholar 

  8. Fitzgerald D, Palmieri D, Hua E et al (2008) Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis 25:799–810

    Article  PubMed  Google Scholar 

  9. Mattieu A, Remmelink M, Haene N et al (2004) Development of a chemoresistant orthotopic human nonsmall cell lung carcinoma model in nude mice. Cancer 101:1908–1918

    Article  CAS  Google Scholar 

  10. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Article  PubMed  CAS  Google Scholar 

  11. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312

    Article  PubMed  CAS  Google Scholar 

  12. Carbonell W, Ansorge O, Sibson N et al (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4:e5857

    Article  PubMed  CAS  Google Scholar 

  13. Wake H, Moorhouse A, **no S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  PubMed  CAS  Google Scholar 

  14. Ransohoff R, Perry V (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  15. Ladeby R, Wirenfeldt M, Garcia-Ovejero D et al (2005) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Rev 48(2):196–206

    Article  PubMed  CAS  Google Scholar 

  16. Pukrop R, Dahghani F, Chuang H-N et al (2010) Microglia promote the colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58:1477–1489

    PubMed  Google Scholar 

  17. Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176:2958–2971

    Article  PubMed  Google Scholar 

  18. Marchetti D, Li J, Shen R (2000) Astrocytes contribute to the brain metastatic specificity of melanoma cells by producing heparanase. Cancer Res 60(17):4767–4770

    PubMed  CAS  Google Scholar 

  19. Gleissner B, Chamberlain M (2006) Neoplastic meningitis. Lancet Neurol 5:443–451

    Article  PubMed  Google Scholar 

  20. Pedersen P-H, Rucklidge G, Mork S et al (1994) Leptomeningeal tissue: a barrier against brain tumor cell invasion. J Natl Cancer Inst 86:1593–1599

    Article  PubMed  CAS  Google Scholar 

  21. Heyn C, Ronald J, MacKenzie L et al (2006) In vivo magnetic resonance imaging of single cells in mouse brains with optical validation. Magn Reson Med 55(1):23–29

    Article  PubMed  Google Scholar 

  22. McGowan PM, Kirstein JM, Chambers AF (2009) Micrometastatic disease and metastatic outgrowth: clinical issues and experimental approaches. Future Oncol 5(7):1083–1098

    Article  PubMed  CAS  Google Scholar 

  23. Chu JE, Allan AL (2012) The role of cancer stem cells in the organ tropism of breast cancer metastasis: a mechanistic balance between the “seed” and the “soil”? Int J Breast Cancer 2012:209748

    PubMed  Google Scholar 

  24. Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293

    Article  PubMed  CAS  Google Scholar 

  25. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66(23):11089–11093

    Article  PubMed  CAS  Google Scholar 

  26. Sun M, Behrens C, Feng L et al (2009) HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res 15(15):4829–4837

    Article  PubMed  CAS  Google Scholar 

  27. Silva LD, Simpson P, Smart C et al (2010) HER3 and downstream pathways are involved in colonization of brain metastases from breast cancer. Breast Cancer Res 12:1–13

    Google Scholar 

  28. Gaedcke J, Traub F, Milde S et al (2007) Predominance of the basal type and HER-2/neu type in brain metastasis from breast cancer. Mod Pathol 20(8):864–870

    CAS  Google Scholar 

  29. Wu P-F, Kuo K-T, Kuo L-T et al (2010) O6-Methylguanine-DNA methyltransferase expression and prognostic value in brain metastases of lung cancers. Lung Cancer 68:484–490

    Article  PubMed  Google Scholar 

  30. Gomez-Roca C, Raynaud C, Penault-Llorca F et al (2009) Differential expression of ­biomarkers in primary non-small cell lung cancer and metastatic sites. J Thorac Oncol 4:1212–1220

    Article  PubMed  Google Scholar 

  31. Mehrotra J, Vali M, McVeigh M et al (2004) Very high frequency of hypermethylated genes in breast cancer metastasis to bone, brain and lung. Clin Cancer Res 10:3104–3109

    Article  PubMed  CAS  Google Scholar 

  32. Stark A, Tongers K, Maass N et al (2005) Reduced metastasis suppressor gene mRNA expression in breast cancer brain metastases. J Cancer Res Clin Oncol 131:191–198

    Article  PubMed  CAS  Google Scholar 

  33. Stark A, Pfannenschmidt S, Tscheslog H et al (2006) Reduced mRNA and protein expression of BCL-2 versus decreased mRNA and increased protein expression of BAX in breast cancer brain metastases: a real-time PCR and immunohistochemical evaluation. Neurol Res 28:787–793

    Article  PubMed  CAS  Google Scholar 

  34. Veenendaal L, Kranenburg O, Smakman N et al (2008) Differential notch and TGF-b signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol 30:1–11

    PubMed  CAS  Google Scholar 

  35. Palmieri D, Fitzgerald D, Shreeve S et al (2009) Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res 7:1438–1445

    Article  PubMed  CAS  Google Scholar 

  36. **e TX, Huang FJ, Aldape KD et al (2006) Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 66(6):3188–3196

    Article  PubMed  CAS  Google Scholar 

  37. Slamon D, Clark G, Wong S et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  PubMed  CAS  Google Scholar 

  38. Schechter AL, Stern DF, Vaidyanathan L et al (1984) The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312(5994):513–516

    Article  PubMed  CAS  Google Scholar 

  39. Lin NU, Winer EP (2007) Brain metastases: the HER2 paradigm. Clin Cancer Res 13(6):1648–1655

    Article  PubMed  CAS  Google Scholar 

  40. Brufsky AM, Mayer M, Rugo HS et al (2011) Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res 17(14):4834–4843

    Article  PubMed  CAS  Google Scholar 

  41. Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26(45):6469–6487

    Article  PubMed  CAS  Google Scholar 

  42. Rusnak DW, Lackey K, Affleck K et al (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1(2):85–94

    PubMed  CAS  Google Scholar 

  43. Stemmler HJ, Schmitt M, Willems A et al (2007) Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood–brain barrier. Anticancer Drug 18(1):23–28

    Article  CAS  Google Scholar 

  44. Stemmler HJ, Heinemann V (2008) Central nervous system metastases in HER-2-overexpressing metastatic breast cancer: a treatment challenge. Oncologist 13(7):739–750

    Article  PubMed  Google Scholar 

  45. Pestalozzi B, Brignoli S (2000) Traztuzumab in CSF. J Clin Oncol 18:2350–2351

    Google Scholar 

  46. Taskar KS, Rudraraju V, Mittapalli RK et al (2011) Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res 29(3):770–781

    Google Scholar 

  47. Gril B, Palmieri D, Bronder JL et al (2008) Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J Natl Cancer Inst 100(15):1092–1103

    Article  PubMed  CAS  Google Scholar 

  48. Gril B, Evans L, Palmieri D et al (2010) Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies. Eur J Cancer 46(7):1204–1210

    Article  PubMed  CAS  Google Scholar 

  49. Jain RK, di Tomaso E, Duda DG et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622

    Article  PubMed  CAS  Google Scholar 

  50. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  PubMed  CAS  Google Scholar 

  51. Herrlinger U, Wiendl H, Renninger M et al (2004) Vascular endothelial growth factor (VEGF) in leptomeningeal metastasis: diagnostic and prognostic value. Br J Cancer 91(2):219–224

    PubMed  CAS  Google Scholar 

  52. Kusters B, Leenders WP, Wesseling P et al (2002) Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62(2):341–345

    PubMed  CAS  Google Scholar 

  53. Kienast Y, von Baumgarten L, Fuhrmann M et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122

    Article  PubMed  CAS  Google Scholar 

  54. Kim LS, Huang S, Lu W et al (2004) Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 21(2):107–118

    Article  PubMed  CAS  Google Scholar 

  55. Leenders W, Küsters B, Pikkemaat J et al (2003) Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int J Cancer 105(4):437–443

    Article  PubMed  CAS  Google Scholar 

  56. Alberts B, Johnson A, Lewis J (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  57. Lorger M, Krueger JS, O’Neal M et al (2009) Activation of tumor cell integrin αvβ3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci 106(26):10666–10671

    Article  PubMed  CAS  Google Scholar 

  58. Darnell JE Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749

    Article  PubMed  CAS  Google Scholar 

  59. Brennan P, Donev R, Hewamana S (2008) Targeting transcription factors for therapeutic benefit. Mol Biosyst 4(9):909–919

    Article  PubMed  CAS  Google Scholar 

  60. McGowan PM, Simedrea C, Ribot EJ et al (2011) Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer. Mol Cancer Res 9(7):834–844

    Article  PubMed  CAS  Google Scholar 

  61. Fiuza UM, Arias AM (2007) Cell and molecular biology of Notch. J Endocrinol 194(3):459–474

    Article  PubMed  CAS  Google Scholar 

  62. Bolos V, Blanco M, Medina V et al (2009) Notch signalling in cancer stem cells. Clin Transl Oncol 11(1):11–19

    Article  PubMed  CAS  Google Scholar 

  63. Nam DH, Jeon HM, Kim S et al (2008) Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res Off J Am Assoc Cancer Res 14(13):4059–4066

    Article  CAS  Google Scholar 

  64. Luistro L, He W, Smith M et al (2009) Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res 69(19):7672–7680

    Article  PubMed  CAS  Google Scholar 

  65. Veenendaal LM, Kranenburg O, Smakman N et al (2008) Differential Notch and TGFβ ­signaling in primary colorectal tumors and their corresponding metastases. Cell Oncol 30(1):1–11

    Google Scholar 

  66. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  PubMed  CAS  Google Scholar 

  67. Cadigan KM (2012) TCFs and Wnt/beta-catenin signaling: more than one way to throw the switch. Curr Top Dev Biol 98:1–34

    Article  PubMed  CAS  Google Scholar 

  68. Nguyen DX, Chiang AC, Zhang XH et al (2009) WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138(1):51–62

    Article  PubMed  CAS  Google Scholar 

  69. Klemm F, Bleckmann A, Siam L et al (2011) Beta-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis 32(3):434–442

    Article  PubMed  CAS  Google Scholar 

  70. Johnston PA, Grandis JR (2011) STAT3 signaling: anticancer strategies and challenges. Mol Interv 11(1):18–26

    Article  PubMed  CAS  Google Scholar 

  71. Harrison DA (2012) The Jak/STAT pathway. Cold Spring Harb Perspect Biol 4(3):a011205, pii

    Article  PubMed  CAS  Google Scholar 

  72. Larsen L, RÖPke C (2002) Suppressors of cytokine signalling: SOCS. APMIS 110(12):833–844

    Article  PubMed  CAS  Google Scholar 

  73. Chiu WT, Lee HT, Huang FJ et al (2011) Caveolin-1 upregulation mediates suppression of primary breast tumor growth and brain metastases by stat3 inhibition. Cancer Res 71(14):4932–4943

    Article  PubMed  CAS  Google Scholar 

  74. Huang FJ, Steeg PS, Price JE et al (2008) Molecular basis for the critical role of suppressor of cytokine signaling-1 in melanoma brain metastasis. Cancer Res 68(23):9634–9642

    Article  PubMed  CAS  Google Scholar 

  75. Real PJ, Sierra A, De Juan A et al (2002) Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21(50):7611–7618

    Article  PubMed  CAS  Google Scholar 

  76. ** Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–163

    Article  PubMed  CAS  Google Scholar 

  77. Kong LY, Gelbard A, Wei J et al (2010) Inhibition of p-STAT3 enhances IFN-alpha efficacy against metastatic melanoma in a murine model. Clin Cancer Res 16(9):2550–2561

    Article  CAS  Google Scholar 

  78. Wang MT, Honn KV, Nie D (2007) Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev 26(3–4):525–534

    Article  PubMed  CAS  Google Scholar 

  79. de Vries HE, Blom-Roosemalen MC, van Oosten M et al (1996) The influence of cytokines on the integrity of the blood–brain barrier in vitro. J Neuroimmunol 64(1):37–43

    Article  PubMed  Google Scholar 

  80. Tsuchida A, Okajima T, Furukawa K et al (2003) Synthesis of disialyl Lewis a (Le(a)) structure in colon cancer cell lines by a sialyltransferase, ST6GalNAc VI, responsible for the synthesis of alpha-series gangliosides. J Biol Chem 278(25):22787–22794

    Article  PubMed  CAS  Google Scholar 

  81. Bos PD, Zhang XH, Nadal C et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459(7249):1005–1009

    Article  PubMed  CAS  Google Scholar 

  82. Tombran-Tink J (2005) The neuroprotective and angiogenesis inhibitory serpin, PEDF: new insights into phylogeny, function, and signaling. Front Biosci J Virt Libr 10:2131–2149

    Article  CAS  Google Scholar 

  83. Tombran-Tink J, Barnstable CJ (2003) PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci 4(8):628–636

    Article  PubMed  CAS  Google Scholar 

  84. Fernandez-Garcia NI, Volpert OV, Jimenez B (2007) Pigment epithelium-derived factor as a multifunctional antitumor factor. J Mol Med (Berl) 85(1):15–22

    Article  CAS  Google Scholar 

  85. Fitzgerald DP, Subramanian P, Deshpande M et al (2012) Opposing effects of pigment epithelium-derived factor on breast cancer cell versus neuronal survival: implication for brain metastasis and metastasis-induced brain damage. Cancer Res 72(1):144–153

    Article  PubMed  CAS  Google Scholar 

  86. Campochiaro PA, Nguyen QD, Shah SM et al (2006) Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther 17(2):167–176

    Article  PubMed  CAS  Google Scholar 

  87. Vlodavsky I, Beckhove P, Lerner I et al (2011) Significance of heparanase in cancer and inflammation. Cancer Microenviron 71(7):2772–2780

    Google Scholar 

  88. Marchetti D, Nicolson GL (2001) Human heparanase: a molecular determinant of brain metastasis. Adv Enzyme Regul 41:343–359

    Article  PubMed  CAS  Google Scholar 

  89. Murry BP, Blust BE, Singh A et al (2006) Heparanase mechanisms of melanoma metastasis to the brain: development and use of a brain slice model. J Cell Biochem 97(2):217–225

    Article  PubMed  CAS  Google Scholar 

  90. Zhang L, Sullivan PS, Goodman JC et al (2011) MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71(3):645–654

    Article  PubMed  CAS  Google Scholar 

  91. Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38(12):2018–2039

    Article  PubMed  CAS  Google Scholar 

  92. Damiens E, El Yazidi I, Mazurier J et al (1998) Role of heparan sulphate proteoglycans in the regulation of human lactoferrin binding and activity in the MDA-MB-231 breast cancer cell line. Eur J Cell Biol 77(4):344–351

    Article  PubMed  CAS  Google Scholar 

  93. Cohen I, Pappo O, Elkin M et al (2006) Heparanase promotes growth, angiogenesis and ­survival of primary breast tumors. Int J Cancer 118(7):1609–1617

    Article  PubMed  CAS  Google Scholar 

  94. Zetser A, Bashenko Y, Miao HQ et al (2003) Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res 63(22):7733–7741

    PubMed  CAS  Google Scholar 

  95. Elkin M, Ilan N, Ishai-Michaeli R et al (2001) Heparanase as mediator of angiogenesis: mode of action. FASEB J 15(9):1661–1663

    PubMed  CAS  Google Scholar 

  96. Zetser A, Bashenko Y, Edovitsky E et al (2006) Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res 66(3):1455–1463

    Article  PubMed  CAS  Google Scholar 

  97. Theodoro TR, de Matos LL, Sant Anna AV et al (2007) Heparanase expression in circulating lymphocytes of breast cancer patients depends on the presence of the primary tumor and/or systemic metastasis. Neoplasia 9(6):504–510

    Article  PubMed  CAS  Google Scholar 

  98. McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151(1):1–14

    Article  PubMed  CAS  Google Scholar 

  99. Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol 11(11):S44–S51

    Article  PubMed  CAS  Google Scholar 

  100. Perez-Gomez E, Del Castillo G, Juan Francisco S et al (2010) The role of the TGF-beta ­coreceptor endoglin in cancer. ScientificWorldJournal 10:2367–2384

    Article  PubMed  CAS  Google Scholar 

  101. Rahimi RA, Leof EB (2007) TGF-beta signaling: a tale of two responses. J Cell Biochem 102(3):593–608

    Article  PubMed  CAS  Google Scholar 

  102. Heldin CH, Landstrom M, Moustakas A (2009) Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21(2):166–176

    Article  PubMed  CAS  Google Scholar 

  103. Zhang C, Zhang F, Tsan R et al (2009) Transforming growth factor-beta2 is a molecular determinant for site-specific melanoma metastasis in the brain. Cancer Res 69(3):828–835

    Article  PubMed  CAS  Google Scholar 

  104. Oxmann D, Held-Feindt J, Stark AM et al (2008) Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 27(25):3567–3575

    Article  PubMed  CAS  Google Scholar 

  105. Nagaraj NS, Datta PK (2010) Targeting the transforming growth factor-beta signaling ­pathway in human cancer. Expert Opin Investig Drugs 19(1):77–91

    Article  PubMed  CAS  Google Scholar 

  106. Seaman EK, Ross S, Sawczuk IS (1995) High incidence of asymptomatic brain lesions in metastatic renal cell carcinoma. J Neurooncol 23(3):253–256

    Article  PubMed  CAS  Google Scholar 

  107. Caffo O, Gernone A, Ortega C et al (2012) Central nervous system metastases from castration-resistant prostate cancer in the docetaxel era. J Neurooncol 107(1):191–196

    Article  PubMed  Google Scholar 

  108. Go PH, Klaassen Z, Meadows MC et al (2011) Gastrointestinal cancer and brain metastasis: a rare and ominous sign. Cancer 117(16):3630–3640

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Steeg Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Woditschka, S., Gril, B., Evans, L.M., Reed, L.T., Steeg, P.S. (2012). The Molecular Biology of Brain Metastasis. In: Palmieri, D. (eds) Central Nervous System Metastasis, the Biological Basis and Clinical Considerations. Cancer Metastasis - Biology and Treatment, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5291-7_2

Download citation

Publish with us

Policies and ethics

Navigation