Purinergic Signaling in Glioma Progression

  • Chapter
  • First Online:
Glioma Signaling

Abstract

Among the pathological alterations that give tumor cells invasive potential, purinergic signaling is emerging as an important component. Studies performed in in vitro, in vivo and ex vivo glioma models indicate that alterations in the purinergic signaling are involved in the progression of these tumors. Gliomas have low expression of all E-NTPDases, when compared to astrocytes in culture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not evoke cytotoxic action on the majority of glioma cells in culture. The importance of extracellular ATP for glioma pathobiology was confirmed by the reduction in glioma tumor size by apyrase, which degrades extracellular ATP to AMP, and the striking increase in tumor size by over-expression of an ecto-enzyme that degrades ATP to ADP, suggesting the effect of extracellular ATP on the tumor growth depends on the nucleotide produced by its degradation. The participation of purinergic receptors on glioma progression, particularly P2X7, is involved in the resistance to ATP-induced cell death. Although more studies are necessary, the purinergic signaling, including ectonucleotidases and receptors, may be considered as future target for glioma pharmacological or gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADA:

Adenosine deaminase

ADP:

Adenosine diphosphate

Akt:

Protein kinase B

ALP:

Alkaline phosphatase

AMP:

Adenosine monophosphate

APCP:

α,β-Methylene ADP

Apyrase:

Adenyl-pyrophosphatase

ATP:

Adenosine triphosphate

BBB:

Brain blood barrier

BBG:

Brilliant Blue G

BzATP:

2,3-(Benzoyl-4-benzoyl)-ATP

CDK:

Cyclin-dependent kinase

CDKN2A (Ink4a/ARF):

Cyclin-dependent kinase inhibitor 2A

CSCs:

Cancer stem cell

ECM:

Extracellular matrix

Ecto-5′-NT/CD73:

Ecto-5′-nucleotidase

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

E-NPP:

Ectonucleoside pyrophosphatase/phosphodiesterase

E-NTPDase:

Ectonucleoside triphosphate diphosphohydrolase

ERBB2:

Human epidermal growth factor receptor 2

ERK:

Extracellular signal-regulated kinases

FGF:

Fibroblast growth factor

IL-1β:

Interleukin 1β

IL-6:

Interleukin 6

KO:

Knockout

MDM2:

Murine double minute 2

MET:

NF1, neurofibromatosis 1

MMP-9:

Metalloproteinase-9

NPCs:

Neural precursor cell

NSC:

Neural stem cell

OPC:

Oligodendrocyte precursor cell

PDGF:

Platelet-derived growth factor

PI3K:

Phosphatidylinositol 3-kinase

PTEN:

Phosphatase and tensin homolog

Ras/MAPK:

Ras/Mitogen activated protein kinase

Ras-GAP:

Ras-GTPase activating protein

NF1:

Neurofibrimatosis 1

RB1:

Retinoblastoma

CNS:

Central nervous system

SVZ:

Subventricular zone

TNF-α:

Tumor necrosis factor

References

  • Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonte C, Aloisi F, Visentin S (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50:132–144

    PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    PubMed  CAS  Google Scholar 

  • Baranska J, Czajkowski R, Sabala P (2004) Croos-talks between nucleotide receptor-induced signaling pathways in serum-deprived and non-starved glioma C6 cells. Adv Enzyme Regul 44:219–232

    PubMed  CAS  Google Scholar 

  • Battastini AMO, da Rocha JBT, Kuplich CK, Dias RD, Sarkis JJF (1991) Characterization of an ATP diphosphohydrolase (EC 3.6.1.5) in synaptosomes from cerebral cortex of adult rats. Neurochem Res 16(12):1303–1310

    PubMed  CAS  Google Scholar 

  • Bavaresco L, Bernardi A, Braganhol E, Wink MR, Battastini AMO (2007) Dexamethasone inhibits proliferation and stimulates ecto-5′-nucleotidase/CD73 activity in C6 rat glioma cell line. J Neurooncol 84:1–8

    PubMed  CAS  Google Scholar 

  • Bavaresco L, Bernardi A, Braganhol E, Cappellari AR, Rockenbach L, Farias PF, Wink MR, Delgado-Cañedo A, Battastini AMO (2008) The role of ecto-5′-nucleotidase/CD73 in glioma cell line proliferation. Mol Cell Biochem 319(1–2):61–68

    PubMed  CAS  Google Scholar 

  • Beier D, Rohrl S, Pillai DR, Schwarz S, Kunz-Schughart LA, Leukel P, Proescholdt M, Brawanski A, Bogdahn U, Trampe-Kieslich A, Giebel B, Wischhusen J, Reifenberger G, Hau P, Beier CP (2008) Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 68:5706–5715

    PubMed  CAS  Google Scholar 

  • Belcher SM, Zsarnovszky A, Crawford PA, Hemani H, Spurling L, Kirley TL (2006) Immunolocalization of ecto-nucleoside triphosphate diphosphohydrolase 3 in rat brain: implications for modulation of multiple homeostatic systems including feeding and sleep-wake behavior. Neuroscience 137:1331–1346

    PubMed  CAS  Google Scholar 

  • Beraudi A, Traversa U, Villani L, Sekino Y, Nagy JI, Poli A (2003) Distribution and expression of A1 adenosine receptors, adenosine deaminase and adenosine deaminase-binding protein (CD26) in goldfish brain. Neurochem Int 42(6):455–464

    PubMed  CAS  Google Scholar 

  • Berens ME, Giese A (1999) “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia 1:208–219

    PubMed  CAS  Google Scholar 

  • Bernardi A, Bavaresco L, Wink MR, Jacques-Silva MC, Delgado-Cañedo A, Lenz G, Battastini AMO (2007) Indomethacin stimulates activity and expression of ecto-5′-nucleotidase/CD73 in glioma cell lines. Eur J Pharmacol 569:8–15

    PubMed  CAS  Google Scholar 

  • Bianchi V, Spychala J (2003) Mammalian 5′-nucleotidases. J Biol Chem 278(47):46195–46198

    PubMed  CAS  Google Scholar 

  • Biederbick A, Kosan C, Kunz J, Elsasser HP (2000) First apyrase splice variants have different enzymatic properties. J Biol Chem 275:19018–19024

    PubMed  CAS  Google Scholar 

  • Bigonnesse F, Lévesque SA, Kukulski F, Lecka J, Robson SC, Fernandes MJ, Sévigny J (2004) Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-8. Biochemistry 43(18):5511–5519

    PubMed  CAS  Google Scholar 

  • Blass-Kampmann S, Kindler-Rohrborn A, Deissler H, D’Urso D, Rajewsky MF (1997) In vitro differentiation of neural progenitor cells from prenatal rat brain: common cell surface glycoprotein on three glial cell subsets. J Neurosci Res 48:95–111

    PubMed  CAS  Google Scholar 

  • Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605

    PubMed  CAS  Google Scholar 

  • Boeck CR, Sarkis JJF, Vendite D (2002) Kinetic characterization and immunodetection of ecto-ATP diphosphohydrolase (EC 3.6.1.5) in cultured hippocampal neurons. Neurochem Int 40:449–453

    PubMed  CAS  Google Scholar 

  • Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C (2000) Nucleotide pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol 35:393–432

    PubMed  CAS  Google Scholar 

  • Braganhol E, Tamajusuku ASK, Bernardi A, Wink MR, Battastini AMO (2007) Ecto-5′-nucleotidase/CD73 inhibition by quercetin in the human U138MG glioma cell line. Biochim Biophys Acta 1770:1352–1359

    PubMed  CAS  Google Scholar 

  • Braganhol E, Huppes D, Bernardi A, Wink MR, Lenz G, Battastini AMO (2008) A comparative study of ectonucleotidase and P2 receptor mRNA profiles in C6 cell line cultures and C6 ex vivo glioma model. Cell Tissue Res 335(2):331–340

    PubMed  Google Scholar 

  • Braganhol E, Morrone FB, Bernardi A, Huppes D, Meurer L, Edelweiss MI, Lenz G, Wink MR, Robson SC, Battastini AMO (2009) NTPDase2 expression modulates in vivo rat glioma growth. Cancer Sci 100(8):1434–1442

    PubMed  CAS  Google Scholar 

  • Braganhol E, Zanin RF, Bernardi A, Bergamin LS, Cappellari AR, Campesato LF, Morrone FB, Campos MM, Calixto JB, Edelweiss MI, Wink MR, Sévigny J, Robson SC, Battastini AM (2011) Overexpression of NTPDase2 in gliomas promotes systemic inflammation and pulmonary injury. Purinergic Signal. doi:10.1007/s11302-011-9276-1

  • Braun N, Sevigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H (2000) Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/CD39 expression to microglia and vasculature of the brain. Eur J Neurosci 12:4357–4366

    PubMed  CAS  Google Scholar 

  • Braun N, Sevigny J, Mishra SK, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the develo** and adult rat brain. Eur J Neurosci 17:1355–1364

    PubMed  Google Scholar 

  • Bruno AN, Bonan CD, Wofchuk ST, Sarkis JJ, Battastini AM (2002) ATP diphosphohydrolase (NTPDase 1) in rat hippocampal slices and effect of glutamate on the enzyme activity in different phases of development. Life Sci 71(2):215–225

    PubMed  CAS  Google Scholar 

  • Buckingham SC, Campbell SL, Haas BR, Montana V, Robel S, Ogunrinu T, Sontheimer H (2011) Glutamate release by primary brain tumors induces epileptic activity. Nat Med 17(10):1269–1274

    PubMed  CAS  Google Scholar 

  • Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590

    PubMed  CAS  Google Scholar 

  • Calhau C, Martel F, Soares-da-Silva P, Hipólito-Reis C, Azevedo I (2002) Regulation of [(3)H]MPP(+) transport by phosphorylation/dephosphorylation pathways in RBE4 cells: role of ecto-alkaline phosphatase. Naunyn Schmierdebergs Arch Pharmacol 365(5):349–356

    CAS  Google Scholar 

  • Cappellari AR, Vasques GJ, Bavaresco L, Braganhol E, Battastini AMO (2011) Involvement of ecto-5′-nucleotidase/CD73 in U138MG cell adhesion. Mol Cell Biochem 359:315–322

    PubMed  Google Scholar 

  • Chadwick BP, Frischauf AM (1998) The CD39-like gene family: identification of three new human members (CD39L2, CD39L3, and CD39L4), their murine homologues, and a member of the gene family from Drosophila melanogaster. Genomics 50(3):357–367

    PubMed  CAS  Google Scholar 

  • Ciruela F, Saura C, Canela EI, Mallol J, Lluis C, Franco R (1996) Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett 380:219–223

    PubMed  CAS  Google Scholar 

  • Cunha RA, Sebastião AM (1991) Extracellular metabolism of adenine nucleotides and adenosine in the innervated skeletal muscle of the frog. Eur J Pharmacol 197:83–92

    PubMed  CAS  Google Scholar 

  • Cunha RA, Almeida T, Ribeiro JA (2000) Modification by arachidonic acid of extracellular adenosine metabolism and neuromodulatory action in the rat hippocampus. J Biol Chem 275(48):37572–37581

    PubMed  CAS  Google Scholar 

  • Deissler H, Blass-Kampmann S, Bruyneel E, Mareel M, Rajewsky MF (1995a) Neural cell surface differentiation antigen gp130RB13-6induces fibroblasts and glioma cells to express astroglial proteins and invasive properties. FASEB J 13:657–666

    Google Scholar 

  • Deissler H, Lottspeich F, Rajewsky MF (1995b) Affinity purification and cDNA cloning of rat neural differentiation and tumor cell surface antigen gp130RB13-6 reveals relationship to human and murine PC-1. J Biol Chem 270:9849–9855

    PubMed  CAS  Google Scholar 

  • Delarasse C, Gonnord P, Galante M, Auger R, Daniel H, Motta I, Kanellopoulos JM (2009) Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 109:846–857

    PubMed  CAS  Google Scholar 

  • Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228

    PubMed  Google Scholar 

  • Dornand J, Bonnafous JC, Mani JC (1978) Purification and properties of 5′-nucleotidase from lymphocyte plasma membranes. Eur J Biochem 87:459–465

    PubMed  CAS  Google Scholar 

  • Ehrlich YH, Hogan MV, Pawlowska Z, Naik U, Kornecki E (1990) Ectoprotein kinase in the regulation of cellular responsiveness to extracellular ATP. Ann N Y Acad Sci 603:401–416

    PubMed  CAS  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2004) Areal and subcellular localization of the ubiquitous alkaline phosphatase in the primate cerebral cortex: evidence for a role in neurotransmission. Cereb Cortex 14:595–609

    PubMed  Google Scholar 

  • Fonta C, Negyessy L, Renaud L, Barone P (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486(2):179–196

    PubMed  Google Scholar 

  • Franco R, Casado V, Ciruela F, Saura C, Mallol J, Canela EI, Lluis C (1997) Cell surface adenosine deaminase: much more than an ecto-enzyme. Prog Neurobiol 52:283–294

    PubMed  CAS  Google Scholar 

  • Franco R, Valenzuela A, Lluis C, Blanco J (1998) Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev 161:27–42

    PubMed  CAS  Google Scholar 

  • Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–303

    PubMed  Google Scholar 

  • Fuss B, Baba H, Phan T, Tuohy VK, Macklin WB (1997) Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci 17:9095–9103

    PubMed  CAS  Google Scholar 

  • Ganzella MG, Faraco RB, Almeida RF, Fernandes VF, Souza DO (2011) Intracerebroventricular administration of inosine is anticonvulsant against quinolinic acid-induced seizures in mice: an effect independent of benzodiazepine and adenosine receptors. Pharmacol Biochem Behav 100:271–274

    PubMed  CAS  Google Scholar 

  • Gessi S, Sacchetto V, Fogli E, Merighi S, Varani K, Baraldi PG, Tabrizi MA, Leung E, MacLennan S, Borea PA (2010) Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochem Pharmacol 79:1483–1495

    PubMed  CAS  Google Scholar 

  • Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808:1400–1412

    PubMed  CAS  Google Scholar 

  • Gines S, Ciruela F, Burgueño J, Casado V, Canela EI, Mallol J, Lluis C, Franco R (2001) Involvement of caveolin in ligand-induced recruitment and internalization of A1 adenosine receptor and adenosine deaminase in an epithelial cell line. Mol Pharmacol 59:1314–1323

    PubMed  CAS  Google Scholar 

  • Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638:1–19

    PubMed  CAS  Google Scholar 

  • Goldman N, Chen M, Fujita T, Xu Q, Peng W, Liu W, Jensen TK, Pei Y, Wang F, Han X, Chen JF, Schnermann J, Takano T, Bekar L, Tieu K, Nedergaard M (2010) Nat Neurosci 13(7):883–888

    PubMed  CAS  Google Scholar 

  • Grobben B, Anciaux K, Roymans D, Stefan C, Bollen M, Esmans EL, Slegers H (1999) An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem 72:826–834

    PubMed  CAS  Google Scholar 

  • Hansen KR, Resta R, Webb CF, Thompson LF (1995) Isolation and characterization of the promoter of the human 5′-nucleotidase 9CD730-encoding gene. Gene 167:307–312

    PubMed  CAS  Google Scholar 

  • Haskó G, Sitkovsky MV, Szabó C (2004) Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 25(3):152–157

    PubMed  Google Scholar 

  • Heine P, Braun N, Heilbronn A, Zimmermann H (1999) Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. Eur J Biochem 262:102–107

    PubMed  CAS  Google Scholar 

  • Heymann D, Reddington M, Kreutzberg GW (1984) Subcellular localization of 5′-nucleotidase in rat brain. J Neurochem 43(4):971–978

    PubMed  CAS  Google Scholar 

  • Hicks-Berger CA, Chadwick BP, Frischauf AM, Kirley TL (2000) Expression and characterization of soluble and membrane-bound human nucleoside triphosphate diphosphohydrolase 6 (CD39L2). J Biol Chem 275:34041–34045

    PubMed  CAS  Google Scholar 

  • Jacques-Silva MC, Bernardi A, Rodnight R, Lenz G (2004a) ERK, PKC and PI3K/Akt pathways mediate extracellular ATP and adenosine-induced proliferation of U138-MG human glioma cell line. Oncology 67:450–459

    PubMed  CAS  Google Scholar 

  • Jacques-Silva MC, Rodnight R, Lenz G, Liao Z, Kong Q, Tran M, Kang Y, Gonzalez FA, Weisman GA, Neary JT (2004b) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141:1106–1117

    PubMed  CAS  Google Scholar 

  • Joseph SM, Pifer MA, Przybylski RJ, Dubyak GR (2004) Methylene ATP analogs as modulators of extracellular ATP metabolism and accumulation. Br J Pharmacol 142:1002–1014

    PubMed  CAS  Google Scholar 

  • Kaczmarek E, Koziak K, Sevigny J, Siegel JB, Anrather J, Beaudoin AR, Bach FH, Robson SC (1996) Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem 271:33116–33122

    PubMed  CAS  Google Scholar 

  • Kegel B, Braun N, Heine P, Maliszewski CR, Zimmermann H (1997) An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacology 36(9):1189–1200

    PubMed  CAS  Google Scholar 

  • Kiss DS, Zsarnovszky A, Horvath K, Gyorffy A, Bartha T, Hazai D, Sotonyi P, Somogyi V, Frenyo LV, Diano S (2009) Ecto-nucleoside triphosphate diphosphohydrolase 3 in the ventral and lateral hypothalamic area of female rats: morphological characterization and functional implications. Reprod Biol Endocrinol 7:31–43

    PubMed  Google Scholar 

  • Knowles AF (2011) The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 7:21–45

    PubMed  CAS  Google Scholar 

  • Komoszynski M, Wojtczak A (1996) Apyrases (ATP diphosphohydrolases, EC 3.6.1.5): function and relationship to ATPases. Biochim Biophys Acta 1310:233–241

    PubMed  Google Scholar 

  • Koshiba M, Kojima H, Huang S, Apasov S, Sitkovsky MV (1997) Memory of extracellular adenosine A2A purinergic receptor-mediated signalling in murine T cells. J Biol Chem 272:25881–25889

    PubMed  CAS  Google Scholar 

  • Kubler D, Pyerin W, Bill O, Hotz A, Sonka J, Kinzel V (1989) Evidence for ecto-protein kinase activity that phosphorylates kemptide in a cyclic AMP-dependent model. J Biol Chem 264(24):14549–14555

    PubMed  CAS  Google Scholar 

  • Ledur PF, Villodre ES, Paulus R, Cruz LA, Flores DG, Lenz G (2011) Extracellular ATP reduces tumorsphere growth and cancer stem cell population in U87 human glioblastoma cells. J Cell Biochem. doi:10.1007/s11302-011-9252-9

  • Lemoli RM, Ferrari D, Fogli M, Rossi L, Pizzirani C, Forchap S, Chiozzi P, Vaselli D, Bertoli F, Foutz T, Aluigi M, Baccarani M, Di Virgilio F (2004) Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood 104:1662–1670

    PubMed  CAS  Google Scholar 

  • Lenz G, Gottfried C, Luo Z, Avruch J, Rodnight R, Nie WJ, Kang Y, Neary JT (2000) P2Y purinergic receptor subunits recruit different Mek activators in astrocytes. Br J Pharmacol 129:927–936

    PubMed  CAS  Google Scholar 

  • Lenz G, Goncalves D, Luo Z, Avruch J, Rodnight R, Neary JT (2001) Extracellular ATP stimulates an inhibitory pathway towards growth factor-induced cRaf-1 and MEKK activation in astrocyte cultures. J Neurochem 77:1001–1009

    PubMed  CAS  Google Scholar 

  • Lie AA, Blümcke I, Beck H, Wiestler OD, Elger CE, Schoen SW (1999) 5′-Nucleotidase activity indicates sites of synaptic plasticity and reactive synaptogenesis in the human brain. J Neuropathol Exp Neurol 58(5):451–458

    PubMed  CAS  Google Scholar 

  • Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L, Zong H (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–221

    PubMed  CAS  Google Scholar 

  • Lohmann K (1928) The isolation of various natural phosphoric acid compounds and their identity. Biochem Z 194:306–327

    CAS  Google Scholar 

  • Louis DN (1994) The p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol 53:11–21

    PubMed  CAS  Google Scholar 

  • Ludwig HC, Rausch S, Schallock K, Markakis E (1999) Expression of CD73 (ecto-5′-nucleotidase) in 165 glioblastomas by immunohistochemistry and electromicroscopic histochemistry. Anticancer Res 19:1747–1752

    PubMed  CAS  Google Scholar 

  • Maeda T, Nishiyama F, Ogashiwa M, Takeuchi K, Hirano H (1985) Phosphatase activities in human glioma cells as revealed by light and electron microscopy-a preliminary study. J Neurooncol 3(3):211–216

    PubMed  CAS  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    PubMed  CAS  Google Scholar 

  • Marcus HJ, Carpenter KL, Price SJ, Hutchinson PJ (2010) In vivo assessment of high-grade glioma biochemistry using microdialysis: a study of energy-related molecules, growth factors and cytokines. J Neurooncol 97:11–23

    PubMed  CAS  Google Scholar 

  • Martins MJ, Negrão MR, Hipólito-Reis C (2001) Alkaline phosphatase from rat liver and kidney is differentially modulated. Clin Biochem 34:463–468

    PubMed  CAS  Google Scholar 

  • Matsuoka I, Ohkubo S (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine receptor activation by ATP through rapid and localized generation of adenosine by ecto-nucleotidases. J Pharmacol Sci 94:95–99

    PubMed  CAS  Google Scholar 

  • Matute C (2008) P2X7 receptors in oligodendrocytes: a novel target for neuroprotection. Mol Neurobiol 38:123–128

    PubMed  CAS  Google Scholar 

  • Melani A, De Micheli E, Pinna G, Alfieri A, Corte LD, Pedata F (2003) Adenosine extracellular levels in human brain gliomas: an intraoperative microdialysis study. Neurosci Lett 346(1–2):93–96

    PubMed  CAS  Google Scholar 

  • Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100:31–48

    PubMed  CAS  Google Scholar 

  • Meyerhof O (1945) The origin of reaction of Harden and Young in cell-free alcoholic fermentation. J Biol Chem 157:105–109

    Google Scholar 

  • Morrone FB, Jacques-Silva MC, Horn AP, Bernardi A, Schwartsmann G, Rodnight R, Lenz G (2003) Extracellular nucleotides and nucleosides induce proliferation and increase nucleoside transport in human glioma cell line. J Neurooncol 64:211–218

    PubMed  Google Scholar 

  • Morrone FB, Horn AP, Stella J, Spiller F, Sarkis JJ, Salbego CG, Lenz G, Battastini AM (2005) Increased resistance of glioma cell lines to extracellular ATP cytotoxicity. J Neurooncol 71:135–140

    PubMed  CAS  Google Scholar 

  • Morrone FB, Oliveira DL, Gamermann P, Stella J, Wofchuk S, Wink MR, Meurer L, Edelweiss MIA, Lenz G, Battastini AMO (2006) In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer 23:226

    Google Scholar 

  • Mulero JJ, Yeung G, Nelken ST, Ford JE (1999) CD39-L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates. J Biol Chem 274:20064–20067

    PubMed  CAS  Google Scholar 

  • Mulero JJ, Yeung G, Nelken ST, Bright JM, McGowan DW, Ford JE (2000) Biochemical characterization of CD39L4. Biochemistry 39(42):12924–12928

    PubMed  CAS  Google Scholar 

  • Murphy-Piedmonte DM, Crawford PA, Kirley TL (2005) Bacterial expression, folding, purification and characterization of soluble NTPDase5 (CD39L4) ecto-nucleotidase. Biochim Biophys Acta 1747:251–259

    PubMed  CAS  Google Scholar 

  • Nagy AK, Shuster TA, Delgado-Escueta AV (1986) Ecto-ATPase of mammalian synaptosomes:identification and enzymic characterization. J Neurochem 47:976–986

    PubMed  CAS  Google Scholar 

  • Nagy A, Shuster TA, Delgado-Escueta AV (1989) Rat brain synaptosomal ATP:AMP-phosphotransferase acitvity. J Neurochem 53:1166–1172

    PubMed  CAS  Google Scholar 

  • Narisawa S, Hasegawa H, Watanabe K, Millán JL (1994) Stage-specific expression of alkaline phosphatase during neural development of the mouse. Dev Dyn 201:227–235

    PubMed  CAS  Google Scholar 

  • Navaro JM, Olmo N, Turnay J, López-Conejo MT, Lizarbe MA (1998) Ecto-5′-nucleotidase from a human colon adenocarcinoma cell line. Correlation between enzyme activity and levels in intact cells. Mol Cell Biochem 187:121–131

    Google Scholar 

  • Neary JT, Kang Y, Willoughby KA, Ellis EF (2003) Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23:2348–2356

    PubMed  CAS  Google Scholar 

  • Ohkubo S, Kimura J, Matsuoka I (2000) Ecto-alkaline phosphatase in NG108-15 cells: a key enzyme mediating P1 antagonist-sensitive ATP response. Br J Pharmacol 131(8):1667–1672

    PubMed  CAS  Google Scholar 

  • Oses JP, Cardoso CM, Germano RA, Kirst IB, Rücker B, Fürstenau CR, Wink MR, Bonan CD, Battastini AM, Sarkis JJ (2004) Soluble NTPDase: an additional system of nucleotide hydrolysis in rat blood serum. Life Sci 74(26):3275–3284

    PubMed  Google Scholar 

  • Paas Y, Bohana-Kashtan O, Fishelson Z (1999) Phophorylation of the complement component, C9, by an ecto-protein kinase of human leukemic cells. Immunopharmacology 42:175–185

    PubMed  CAS  Google Scholar 

  • Paez JG, Recio JÁ, Rouzaut A, Notario V (2001) Identity between the PCPH proto-oncogene and the CD39L4 (NTPDase5) ectonucleoside triphosphate diphosphohydrolase gene. Int J Oncol 19:1249–1254

    PubMed  CAS  Google Scholar 

  • Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5′-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ecto-enzymes with distinct roles in human airways. J Biol Chem 278:13468–13479

    PubMed  CAS  Google Scholar 

  • Pinsky DJ, Broekman MJ, Peschon JJ, Stocking KL, Fujita T, Ramasamy R, Connolly ES Jr, Huang J, Kiss S, Zhang Y, Choudhri TF, McTaggart RA, Liao H, Drosopoulos JH, Price VL, Marcus AJ, Maliszewski CR (2002) Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain. J Clin Invest 109:1031–1040

    PubMed  CAS  Google Scholar 

  • Plesner L (1995) Ecto-ATPases: identities and functions. Int Rev Cytol 158:141–214

    PubMed  CAS  Google Scholar 

  • Ravera S, Aluigi MG, Calzia D, Ramoino P, Morelli A, Panfoli I (2011) Evidence for ectopic aerobic ATP production on C6 glioma cell plasma membrane. Cell Mol Neurobiol 31:313–321

    PubMed  CAS  Google Scholar 

  • Recio JA, Paez JG, Maskeri B, Loveland M, Velasco JA, Notario V (2000) Both normal and transforming PCPH proteins have guanosine diphosphatase activity but only the oncoprotein cooperates with Ras in activating extracellular signal-regulated kinase ERK1. Cancer Res 60:1720–1728

    PubMed  CAS  Google Scholar 

  • Recio JA, Paez JG, Sanders S, Kawakami T, Notario V (2002) Partial depletion of intracellular ATP mediates the stress-survival function of the PCPH oncoprotein. Cancer Res 62:2690–2694

    PubMed  CAS  Google Scholar 

  • Redegeld FA, Caldwell CC, Sitkovsky MV (1999) Ecto-protein kinases: ecto-domain phosphorylation as a novel target for pharmacological manipulation? Trends Pharmacol Sci 20:453–459

    PubMed  CAS  Google Scholar 

  • Resta R, Yamashita Y, Thompson LF (1998) Ectoenzyme and signaling functions of lymphocyte. Immunol Rev 161:95–109

    PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    PubMed  CAS  Google Scholar 

  • Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationship and pathophysiological significance. Purinergic Signal 2:409–430

    PubMed  CAS  Google Scholar 

  • Rouzaut A, Recio JA, Notario V (2001) Expression of the protein product of the PCHP proto-conogene in human tumor cell lines. Radiat Res 155:181–187

    PubMed  CAS  Google Scholar 

  • Ryu JK, Choi HB, Hatori K, Heisel RL, Pelech SL, McLarnon JG, Kim SU (2003) Adenosine triphosphate induces proliferation of human neural stem cells: role of calcium and p70 ribosomal protein S6 kinase. J Neurosci Res 72:352–362

    PubMed  CAS  Google Scholar 

  • Ryu JK, Jantaratnotai N, Serrano-Perez MC, McGeer PL, McLarnon JG (2010) Block of purinergic P2X7R inhibits tumor growth in a C6 glioma brain tumor animal model. J Neuropathol Exp Neurol 70:13–22

    Google Scholar 

  • Ryu JK, Jantaratnotai N, Serrano-Perez MC, McGeer PL, McLarnon JG (2011) Block of purinergic P2X7R inhibits tumor growth in a C6 glioma brain tumor animal model. J Neuropathol Exp Neurol 70(1):13–22

    PubMed  CAS  Google Scholar 

  • Sadej R, Spychala J, Skladanowski AC (2006) Expression of ecto-5′-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma. Melanoma Res 16(3):213–222

    PubMed  CAS  Google Scholar 

  • Saura C, Mallol J, Canela E, Lluis C, Franco R (1998) Adenosine deaminase and A1 adenosine receptors internalize together followingagonist-induced receptor desensitization. J Biol Chem 273:17610–17617

    PubMed  CAS  Google Scholar 

  • Seehafer J, Longenecker BM, Shaw AR (1984) Biochemical characterization of human carcinoma surface antigen associated with protein kinase activity. Int J Cancer 34(6):821–829

    PubMed  CAS  Google Scholar 

  • Shapiro JR (2001) Genetics of brain neoplasms. Curr Neurol Neurosci Rep 1:217–224

    PubMed  CAS  Google Scholar 

  • Shi JD, Kukar T, Wang CY, Li QZ, Cruz PE, Davoodi-Semiromi A, Yang P, Gu Y, Lian W, Wu DH, She JX (2001) Molecular cloning and characterization of a novel mammalian endo-apyrase (LALP1). J Biol Chem 276:17474–17478

    PubMed  CAS  Google Scholar 

  • Shukla V, Zimmermann H, Wanf L, Kettenmann H, Raab S, Hammer K, Sévigny J, Robson SC, Braun N (2005) Functional expression of the ecto-ATPase NTPDase2 and of nucleotide receptors by neuronal progenitor cells in the adult murine hippocampus. Neurosci Res 80(5):600–610

    CAS  Google Scholar 

  • Sierko E, Wojtukiewicz MZ (2007) Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin Thromb Hemost 33:712–721

    PubMed  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    PubMed  CAS  Google Scholar 

  • Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    PubMed  CAS  Google Scholar 

  • Smith TM, Carl SA, Kirley TL (1998) Immunological detection of ecto-ATPase in chicken and rat tissues: characterization, distribution, and a cautionary note. Biochem Mol Biol Int 45(5):1057–1066

    PubMed  CAS  Google Scholar 

  • Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87(2–3):161–173

    PubMed  CAS  Google Scholar 

  • Spychala J, Zimmermann AG, Mitchell BS (1999) Tissue-specific regulation of the Ecto-5′-nucleotidase promoter. J Biol Chem 274:22705–22712

    PubMed  CAS  Google Scholar 

  • Stanojević I, Bjelobaba I, Nedeljković N, Drakulić D, Petrović S, Stojiljković M, Horvat A (2011) (2011) Ontogenetic profile of ecto-5′-nucleotidase in rat brain synaptic plasma membranes. Int J Dev Neurosci 29(4):397–403

    PubMed  Google Scholar 

  • Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2:361–370

    PubMed  CAS  Google Scholar 

  • Stochaj U, Dieckhoff J, Mollenhauer J, Cramer M, Mannherz HG (1989) Evidence for the direct interaction of chicken gizzard 5′-nucleotidase with laminin and fibronectin. Biochim Biophys Acta 992(3):385–392

    PubMed  CAS  Google Scholar 

  • Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, Liotta LA (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulation protein. J Biol Chem 267:2524–2529

    PubMed  CAS  Google Scholar 

  • Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H, Schultz PG, Powell SM, Moskaluk CA, Frierson HF Jr, Hampton GM (2001) Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 61(20):7388–7393

    PubMed  CAS  Google Scholar 

  • Takahashi T, Old LJ, Boyse EA (1970) Surface alloantigens of plasma cells. J Exp Med 131:1325–1341

    PubMed  CAS  Google Scholar 

  • Takano T, Lin JH, Arcuino G, Gao K, Yang J, Nedergaard M (2001) Glutamato release promotes growth of malignant gliomas. Nat Med 7:1010–1015

    PubMed  CAS  Google Scholar 

  • Tamajusuku AS, Villodre ES, Paulus R, Coutinho-Silva R, Battasstini AM, Wink MR, Lenz G (2010) Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 109:983–991

    PubMed  CAS  Google Scholar 

  • Taylor SR, Gonzalez-Begne M, Dewhurst S, Chimini G, Higgins CF, Melvin JE, Elliott JI (2008) Sequential shrinkage and swelling underlie P2X7-stimulated lymphocyte phosphatidylserine exposure and death. J Immunol 180:300–308

    PubMed  CAS  Google Scholar 

  • TCGA (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Google Scholar 

  • Tombetta ES, Helenius Q (1999) Glycoprotein reglucosylation and nucleotide sugar utilization in the secretory pathway: identification of a nucleoside diphosphatase in the endoplasmic reticulum. EMBO J 18:3282–3292

    Google Scholar 

  • Tsukimoto M, Harada H, Ikari A, Takagi K (2005) Involvement of chloride in apoptotic cell death induced by activation of ATP-sensitive P2X7 purinoceptor. J Biol Chem 280:2653–2658

    PubMed  CAS  Google Scholar 

  • Turnay J, Olmo N, Reence G, Von der Mark K, Lizarbe MA (1989) 5′-Nucleotidase activity in cultured cell lines: effect of different assay conditions and correlation with cell proliferation. In Vitro Cell Dev Biol 25:1055–1061

    PubMed  CAS  Google Scholar 

  • Velasco JA, Avila MA, Notario V (1999) The product of the cph oncogene is a truncated, nucleotide-binding protein that enhances cellular survival to stress. Oncogene 18:689–701

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208

    PubMed  CAS  Google Scholar 

  • Villar J, Arenas MI, MacCarthy CM, Blanquez MJ, Tirado OM, Notario V (2007) PCPH/ENTPD5 expression enhances the invasiveness of human prostate cancer cells by a protein kinase CD–dependent mechanism. Cancer Res 67(22):10859–10868

    PubMed  CAS  Google Scholar 

  • Visvader JE (2011) Cells of origin in cancer. Nature 469:314–322

    PubMed  CAS  Google Scholar 

  • Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, Sayre JW, Stefani E, McBride W, Pajonk F (2009) In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst 101:350–359

    PubMed  CAS  Google Scholar 

  • Vogel M, Kowalewski HJ, Zimmermann H, Janetzko A, Margolis RU, Wollny HE (1991) Association of the HNK-1 epitope with 5′-nucleotidase from Torpedo marmorata. Biochem J 278:199–202

    PubMed  CAS  Google Scholar 

  • Vollmayer P, Koch M, Braun N, Heine P, Servos J, Israr E, Kegel B, Zimmermann H (2001) Multiple ecto-nucleotidase in PC12 cells: identification and cellular distribution after heterologous expression. J Neurochem 78:1019–1028

    PubMed  CAS  Google Scholar 

  • Von Deimling A, Louis DN, Wiestler OD (1995) Molecular pathways in the formation of gliomas. Glia 15:328–338

    Google Scholar 

  • Wang T-F, Guidotti G (1999) Widespread expression of ecto-apyrase (CD39) in the central nervous system. Brain Res 790:318–322

    Google Scholar 

  • Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833

    PubMed  CAS  Google Scholar 

  • White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27:211–217

    PubMed  CAS  Google Scholar 

  • Wink MR, Lenz G, Braganhol E, Tamajusuku AS, Schwartsmann G, Sarkis JJ, Battastini AM (2003) Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines. Cancer Lett 198(2):211–218

    PubMed  CAS  Google Scholar 

  • Wink MR, Braganhol E, Tamajusuku ASK, Lenz G, Zerbini LF, Libermann TA, Sévigny J, Battastini AM, Robson SC (2006) Nucleoside triphosphate diphosphohydrolase-(NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138:421–432

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Geiger JD, Daddona PE, Nagy JI (1987) Subcellular, regional and immunohistochemical localization of adenosine deaminase in various species. Brain Res Bull 19:473–484

    PubMed  CAS  Google Scholar 

  • Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391

    PubMed  CAS  Google Scholar 

  • Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694

    PubMed  CAS  Google Scholar 

  • Yegutkin GG, Henttinen T, Samburski SS, Spychala J, Jalkanen S (2002) The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem J 367:121–128

    PubMed  CAS  Google Scholar 

  • Yeung G, Mulero JJ, McGowan DW, Bajwa SS, Ford JE (2000) CD39L2, a gene encoding a human nucleoside diphosphatase, predominantly expressed in the heart. Biochemistry 39(42):12916–12923

    PubMed  CAS  Google Scholar 

  • Zhi X, Chen S, Zhou P, Shao Z, Wang L, Ou Z, Yin L (2007) RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin Exp Metastasis 24(6):439–448

    PubMed  CAS  Google Scholar 

  • Zhou P, Zhi X, Zhou T, Chen S, Li X, Wang L, Yin L, Shao Z, Ou Z (2007) Overexpression of Ecto-5′-nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix. Cancer Biol Ther 6(3):426–431

    PubMed  CAS  Google Scholar 

  • Zimmermann H (1992) 5′-Nucleotidase: molecular structure and functional aspects. Biochem J 285:345–365

    PubMed  CAS  Google Scholar 

  • Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-5′-nucleotidase in the nervous system. Prog Neurobiol 49(6):589–618

    PubMed  CAS  Google Scholar 

  • Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52:44–56

    CAS  Google Scholar 

  • Zimmermann H (2006) Purinergic signalling in neuron-glia interactions. In: Novartis foundation symposium 276, Wiley, Chichester, p 113–130

    Google Scholar 

  • Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128

    PubMed  CAS  Google Scholar 

  • Zimmermann H, Braun N, Kegel B, Heine P (1998) New insights into molecular structure and function of ecto-nucleotidases in the nervous system. Neurochem Res 32:421–425

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Maria Isabel A. Edelweiss, Departamento de Patologia, HCPA, UFRGS; Fernanda B. Morrone, Faculdade de Farmácia, PUCRS, Porto Alegre, RS, Brasil; Dr. Simon C. Robson, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA and Dr. Jean Sevigny, Centre de Recherche en Rheumatologie et Immunologie, Centre Hospitalier Universitaire de Québec (Pavillon CHUL) and Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada, for their collaboration. We thank the BioMed Central and Willey Editors for the Copyright permission of Figs. 5.1 and 5.2, published in the papers Morrone et al. (2006) (BMC Cancer 23:226) and Braganhol et al. (2009) (Cancer Sci 100(8): 1434–1442), respectively. We also acknowledge the Brazilian Funding Agencies: CNPq, CAPES, FIPE-HCPA and FAPERGS for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizandra Braganhol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Braganhol, E., Wink, M.R., Lenz, G., Battastini, A.M.O. (2013). Purinergic Signaling in Glioma Progression. In: Barańska, J. (eds) Glioma Signaling. Advances in Experimental Medicine and Biology, vol 986. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4719-7_5

Download citation

Publish with us

Policies and ethics

Navigation