Computational Techniques for Analysis of Shape and Kinematics of Biological Structures

  • Chapter
Image-Based Geometric Modeling and Mesh Generation

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 3))

Abstract

This chapter presents state-of-the-art methods for statistical shape analysis of biological structures obtained from sets of medical images. In particular, emphasis is placed on the techniques necessary to parameterize and then decompose a given set of 3D surfaces extracted from medical images. Shape representation methods such as medial representation (i.e., skeletonization) and harmonic topological map** are presented as tools for parameterizing a given set of surfaces so that they can be quantitatively compared. Then, methods for statistical decomposition including the proper orthogonal decomposition (also called principal component analysis) and independent component analysis are shown for the decomposition of the set of parameterized shapes into the set of fundamental shape features that can be applied to cluster the shapes and build classifiers with the potential for relating shape characteristics to pathology. An example analysis is presented which applies these techniques to parameterize and decompose the shape change of two human right ventricles from cardiac CT scans throughout the cardiac cycle. Advantages, disadvantages, and the relevance of the described methods in clinical medical image applications will be addressed throughout the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aquino W (2007) An object-oriented framework for reduced-order models using proper orthogonal decomposition (POD). Comput Methods Appl Mech Eng 196(41–44):4375–4390. http://linkinghub.elsevier.com/retrieve/pii/S0045782507002058

    Article  MATH  Google Scholar 

  2. Aquino W, Brigham JC, Earls CJ, Sukumar N (2009) Generalized finite element method using proper orthogonal decomposition. Int J Numer Methods Eng 79(7):887–906. http://doi.wiley.com/10.1002/nme.2604

    Article  MathSciNet  MATH  Google Scholar 

  3. Bansal R, Staib LH, Xu D, Zhu H, Peterson BS (2007) Statistical analyses of brain surfaces using Gaussian random fields on 2-D manifolds. IEEE Trans Med Imaging 26(1):46–57. http://www.ncbi.nlm.nih.gov/pubmed/17243583

    Article  Google Scholar 

  4. Barker JL, Garden AS, Ang KK, O’Daniel JC, Wang H, Court LE, Morrison WH, Rosenthal DI, Chao KSC, Tucker SL et al. (2004) Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated ct/linear accelerator system. Int J Radiat Oncol Biol Phys 59(4):960–970. http://www.ncbi.nlm.nih.gov/pubmed/15234029

    Article  Google Scholar 

  5. Blum H (1967) A transformation for extracting new descriptors of shape. In: Models for the perception of speech and visual form, pp 362–380. http://pageperso.lif.univ-mrs.fr/~edouard.thiel/rech/1967-blum.pdf

    Google Scholar 

  6. Brechbuhler C, Gerig G, Kobler O (1995) Parameterization of closed surfaces for 3D shape description. Comput Vis Image Underst 61:154–170

    Article  Google Scholar 

  7. Brigham JC, Aquino W (2009) Inverse viscoelastic material characterization using POD reduced-order modeling in acoustic-structure interaction. Comput Methods Appl Mech Eng 198(9–12):893–903. http://dx.doi.org/10.1016/j.cma.2008.10.018

    Article  MATH  Google Scholar 

  8. Chin KM, Kim NHS, Rubin LJ (2005) The right ventricle in pulmonary hypertension. Coron Artery Dis 16(1):13–18. http://www.ncbi.nlm.nih.gov/pubmed/15654194

    Article  Google Scholar 

  9. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  10. Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Advances in multiresolution for geometric modelling, pp 157–186

    Chapter  Google Scholar 

  11. Gerig G, Styner M, Jones D, Weinberger D, Lieberman J (2001) Shape analysis of brain ventricles using spharm. In: Proceedings IEEE workshop on mathematical methods in biomedical image analysis MMBIA 2001, pp 171–178. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=991731

    Chapter  Google Scholar 

  12. Gotsman C, Gu X, Sheffer A (2003) Fundamentals of spherical parameterization for 3D meshes. ACM Trans Graph 22(3):358. http://portal.acm.org/citation.cfm?doid=882262.882276

    Article  Google Scholar 

  13. Haber I, Metaxas DN, Axel L (2000) Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Med Image Anal 4(4):335–355. http://www.ncbi.nlm.nih.gov/pubmed/11154021

    Article  Google Scholar 

  14. Heimann T, Meinzer H-P (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563. http://www.ncbi.nlm.nih.gov/pubmed/19525140

    Article  Google Scholar 

  15. http://www.simpleware.com/

  16. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430

    Article  Google Scholar 

  17. Jagroop I, Clatworthy I, Lewin J, Mikhailidis D (2000) Shape change in human platelets: measurement with a channelyzer and visualisation by electron microscopy. Platelets 11(1):28–32. http://discovery.ucl.ac.uk/1312114/

    Article  Google Scholar 

  18. Kim SH, Lee J-M, Kim H-P, Jang DP, Shin Y-W, Ha TH, Kim J-J, Kim IY, Kwon JS, Kim SI (2005) Asymmetry analysis of deformable hippocampal model using the principal component in schizophrenia. Hum Brain Mapp 25(4):361–369. http://www.ncbi.nlm.nih.gov/pubmed/15852383

    Article  Google Scholar 

  19. Lorenz C (2000) Generation of point-based 3D statistical shape models for anatomical objects. Comput Vis Image Underst 77(2):175–191. http://linkinghub.elsevier.com/retrieve/pii/S1077314299908147

    Article  Google Scholar 

  20. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1(1):7–21

    Article  Google Scholar 

  21. O’Dell WG, Moore CC, Hunter WC, Zerhouni EA, McVeigh ER (1995) Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 195(3):829–835. http://radiology.rsna.org/content/195/3/829.abstract

    Google Scholar 

  22. Ogniewicz R (1995) Hierarchic Voronoi skeletons. Pattern Recognit 28(3):343–359. http://linkinghub.elsevier.com/retrieve/pii/003132039400105U

    Article  Google Scholar 

  23. Planitz B, Maeder A, Williams J (2005) The correspondence framework for 3D surface matching algorithms. Comput Vis Image Underst 97(3):347–383. http://linkinghub.elsevier.com/retrieve/pii/S1077314204001195

    Article  Google Scholar 

  24. Quicken M, Brechbuhler C, Hug J, Blattmann H, Szekely G (2000) Parameterization of closed surfaces for parametric surface description. In: Proceedings IEEE conference on computer vision and pattern recognition CVPR 2000, vol 1, pp 354–360. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=855840

    Chapter  Google Scholar 

  25. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19(12):1945–1954. http://www.ncbi.nlm.nih.gov/pubmed/15537436

    Article  Google Scholar 

  26. Sacks MS, Chuong CJ, Templeton GH, Peshock R (1993) In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall. Ann Biomed Eng 21(3):263–275. http://www.ncbi.nlm.nih.gov/pubmed/8328726

    Article  Google Scholar 

  27. Siddiqi K, Pizer SM (2008) Medial representations: mathematics, algorithms and applications. Springer, Berlin

    MATH  Google Scholar 

  28. Simon MA, Deible C, Mathier MA, Lacomis J, Goitein O, Shroff SG, Pinsky MR (2009) Phenoty** the right ventricle in patients with pulmonary hypertension. Clin Transl Sci 2(4):294–299

    Article  Google Scholar 

  29. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, **g Z-C et al. (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54(1):S43–S54. http://www.ncbi.nlm.nih.gov/pubmed/19555858

    Article  Google Scholar 

  30. Tang D, Yang C, Geva T, Del Nido PJ (2008) Patient-specific MRI-based 3D FSI rv/lv/patch models for pulmonary valve replacement surgery and patch optimization. J Biomech Eng 130(4):041010

    Article  Google Scholar 

  31. Telea A, Wijk JJV (2002) An augmented fast marching method for computing skeletons and centerlines. In: Proceedings of the symposium on data visualisation, pp 251–259. http://portal.acm.org/citation.cfm?id=509782

    Google Scholar 

  32. Thompson PM, Hayashi KM, de Zubicaray GI, Janke AL, Rose SE, Semple J, Hong MS, Herman DH, Gravano D, Doddrell DM, Toga AW (2004) Map** hippocampal and ventricular change in Alzheimer disease. NeuroImage 22(4):1754–1766. http://www.sciencedirect.com/science/article/pii/S105381190400196X

    Article  Google Scholar 

  33. Vuille C, Weyman AE (1994) Left ventricle I: general considerations, assessment of chamber size and function. In: Principle and practice of echocardiography, 2nd edn. Lea and Febiger, Philadelphia, pp 575–624

    Google Scholar 

  34. Yushkevich PA, Zhang H, Gee JC (2006) Continuous medial representation for anatomical structures. IEEE Trans Med Imaging 25(12):1547–1564

    Article  Google Scholar 

  35. Zayer R, Rossl C, Seidel HP (2006) Curvilinear spherical parameterization. In: IEEE international conference on shape modeling and applications 2006 SMI06, pp 11. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631195

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, J., Brigham, J.C. (2013). Computational Techniques for Analysis of Shape and Kinematics of Biological Structures. In: Zhang, Y. (eds) Image-Based Geometric Modeling and Mesh Generation. Lecture Notes in Computational Vision and Biomechanics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4255-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4255-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4254-3

  • Online ISBN: 978-94-007-4255-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation