A Computational Method for Symmetric Stein Matrix Equations

  • Chapter
  • First Online:
Numerical Linear Algebra in Signals, Systems and Control

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 80))

Abstract

In the present paper, we propose a numerical method for solving the sparse symmetric Stein equation \(AXA^T-X+BB^T=0.\) Such problems appear in control problems, filtering and image restoration. The proposed method is a Krylov subspace method based on the global Arnoldi algorithm. We apply the global Arnoldi algorithm to extract low-rank approximate solutions to Stein matrix equations. We give some theoretical results and report some numerical experiments to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barraud AY (1977) A numerical algorithm to solve A T XA − X = Q. IEEE Trans Autom Contr AC-22:883–885

    Article  MathSciNet  Google Scholar 

  2. Bartels RH, Stewart GW (1994) Algorithm 432: Solution of the matrix equation AX + XB = C. Circ Syst and Signal Proc 13:820–826

    Google Scholar 

  3. Calvetti D, Levenberg N, Reichel L (1997) Iterative methods for X − AXB = C. J Comput Appl Math 86:73–101

    Article  MathSciNet  MATH  Google Scholar 

  4. Datta BN, Datta K (1986) Theoretical and computational aspects of some linear algebra problems in control theory. In: Byrnes CI, Lindquist A (eds) Computational and Combinatorial Methods in Systems Theory. Elsevier, Amsterdam, pp 201–212

    Google Scholar 

  5. Datta BN (2003) Numerical methods for linear control systems design and applications. Academic Press, New York

    Google Scholar 

  6. Davison EJ, Tan FT (1968) The numerical solution of AQ + QA =  − C. IEEE Trans Automat Contr 13:448–449

    Article  Google Scholar 

  7. Golub GH, Nash S, Van Loan C (1979) A Hessenberg-Schur method for the problem AX + XB = C. IEEC Trans Autom Contr AC-24:909–913

    Google Scholar 

  8. Hewer GA (1971) An iterative technique for the computation of steady state gains for the discrete optimal regulator. IEEE Trans Autom Contr AC-16:382–384

    Google Scholar 

  9. Hu DY, Reichel L (1992) Krylov subspace methods for the Sylvester equation. Lin Alg and Appl 174:283–314

    Article  MathSciNet  Google Scholar 

  10. Jaimoukha IM, Kasenally EM (1994) Krylov subspace methods for solving large Lyapunov equations. SIAM J Numer Anal 31:227–251

    Article  MathSciNet  MATH  Google Scholar 

  11. Jbilou K, Messaoudi A, Sadok H (1999) Global FOM and GMRES algorithms for linear systems with multiple right-hand sides. App Num Math 31:49–63

    Article  MathSciNet  MATH  Google Scholar 

  12. Jbilou K, Riquet AJ (2006) Projection methods for large Lyapunov matrix equations. Lin Alg and Appl 415(2):344–358

    Article  MathSciNet  MATH  Google Scholar 

  13. Lancaster P, Rodman L (1995) The algebraic Riccati equations. Clarendon Press, Oxford

    Google Scholar 

  14. Li J-R, Wang F, White J (1999) An efficient Lyapunov equation-based approach for generating reduced-order models of interconnect. In: 36th IEEE/ACM Design Automation Conference, New Orleans, LA, pp 1–6

    Google Scholar 

  15. Moore BC (1981) Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans Auto Contr AC-26:17–31

    Article  Google Scholar 

  16. Penzl T (2000) A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J Sci Comput 21(4):1401–1418

    Article  MathSciNet  MATH  Google Scholar 

  17. Saad Y (1995) Iterative methods for sparse linear systems. PWS Press, New York

    Google Scholar 

  18. Saad Y (1990) Numerical solution of large Lyapunov equations. In: Kaashoek MA, van Schuppen JH, Ran AC (eds) Signal Processing, Scattering, Operator Theory and Numerical Methods. Proceedings of the international symposium MTNS-89, vol 3. Birkhauser, Boston, pp 503–511

    Google Scholar 

  19. Sadok H (2005) Analysis of the convergence of the minimal and the orthogonal residual methods. Numer Algo 40:201–216

    Article  MathSciNet  MATH  Google Scholar 

  20. Sima V (1996) Algorithms for Linear-Quadratic Optimization, Pure and applied Mathematics, vol. 200. Marcel Dekker, Inc., New York

    Google Scholar 

  21. Smith RA (1968) Matrix equation XA + BX = C. SIAM J Appl Math 16(1):198–201

    Article  MathSciNet  MATH  Google Scholar 

  22. Stykel T (2002) Analysis and numerical solution of generalized Lyapunov equations. Dissertation, TU Berlin

    Google Scholar 

  23. Van Dooren P (2000) Gramian based model reduction of large-scale dynamical systems. In: Numerical Analysis. Chapman and Hall/CRC Press, London, pp 231–247

    Google Scholar 

  24. Weyl H (1949) Inequalities between the two kinds of eigenvalues of a linear transformation. Proc Nat Sci USA 30:408–411

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for helpful remarks and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jbilou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jbilou, K., Messaoudi, A. (2011). A Computational Method for Symmetric Stein Matrix Equations. In: Van Dooren, P., Bhattacharyya, S., Chan, R., Olshevsky, V., Routray, A. (eds) Numerical Linear Algebra in Signals, Systems and Control. Lecture Notes in Electrical Engineering, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0602-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0602-6_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0601-9

  • Online ISBN: 978-94-007-0602-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation