Signal Cross Talks for Sustained MAPK Activation and Cell Migration Mediated by Reactive Oxygen Species: The Involvement in Tumor Progression

  • Chapter
  • First Online:
Signal Transduction in Cancer Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 15))

Abstract

Signal transduction exerted by the microenvironment around the primary tumor locus may trigger tumor metastasis especially at the migration stage. Sustained mitogen activated protein kinase (MAPK) signaling involved in uncontrolled tumor cell migration rely on the cross talks between integrin, receptor tyrosine kinas (RTK) and protein kinase C (PKC). The molecular mechanisms for cross talking between these migration-related signal cascades leading to sustained cell migration are reviewed, focusing on the focal adhesion scaffold protein paxillin as the platform for signal integration. We proposed reactive oxygen species (ROS) as the critical signal messenger sustaining these signal cascades. For the cross talk of integrin with RTK, ROS may suppress paxillin-associated protein tyrosine phosphatase (PTP-PEST) relieving its negative regulatory effects. For the cross talk of integrin with PKC, PKC itself may phosphorylate integrin or paxillin-associated focal adhesion proteins to induce generation of ROS which may reactivate PKC. In the future, ROS will be validated as the promising therapeutic targets for prevention of tumor metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006; 127: 679–695.

    PubMed  CAS  Google Scholar 

  2. Cairns RA, Khokha R, Hill RP. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr. Mol. Med. 2003; 3(7): 659–671.

    PubMed  CAS  Google Scholar 

  3. Sung SY, Hsieh CL, Wu D, Chung LW, Johnstone PA. Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance. Curr. Probl. Cancer 2007; 31(2): 36–100.

    PubMed  Google Scholar 

  4. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science 2003; 302(5651): 1704–1709.

    PubMed  CAS  Google Scholar 

  5. Gao CF, Vande Woude GF. HGF/SF-Met signaling in tumor progression. Cell. Res. 2005; 15(1): 49–51.

    PubMed  Google Scholar 

  6. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 2006; 6(7): 506–520.

    PubMed  CAS  Google Scholar 

  7. Kim H, Muller WJ. The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp. Cell Res. 1999; 253(1): 78–87.

    PubMed  CAS  Google Scholar 

  8. Qiang YW, Walsh K, Yao L, Kedei N, Blumberg PM, Rubin JS, et al. Wnts induce migration and invasion of myeloma plasma cells. Blood 2005; 106(5): 1786–1793.

    PubMed  CAS  Google Scholar 

  9. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298(5600): 1911–1912.

    PubMed  CAS  Google Scholar 

  10. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J. Cell Sci. 2004; 117(Pt 20): 4619–4628.

    PubMed  CAS  Google Scholar 

  11. Galabova-Kovacs G, Kolbus A, Matzen D, Meissl K, Piazzolla D, Rubiolo C, et al. ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle 2006; 5(14): 1514–1518.

    PubMed  CAS  Google Scholar 

  12. von Kriegsheim A, Pitt A, Grindlay GJ, Kolch W, Dhillon AS. Regulation of the Raf-MEK-ERK pathway by protein phosphatase 5. Nat. Cell Biol. 2006; 8(9): 1011–1016.

    Google Scholar 

  13. Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, et al. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat. Cell Biol. 2005; 7(8): 837–843.

    PubMed  CAS  Google Scholar 

  14. Giehl K. Oncogenic Ras in tumour progression and metastasis. Biol. Chem. 2005; 386(3): 193–205.

    PubMed  CAS  Google Scholar 

  15. Shin I, Kim S, Song H, Kim HR, Moon A. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J. Biol. Chem. 2005; 280(15): 14675–14683.

    PubMed  CAS  Google Scholar 

  16. Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P, et al. Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Res. 2004; 64(15): 5291–5300.

    PubMed  CAS  Google Scholar 

  17. Woods D, Cherwinski H, Venetsanakos E, Bhat A, Gysin S, Humbert M, et al. Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Mol. Cell. Biol. 2001; 21(9): 3192–3205.

    PubMed  CAS  Google Scholar 

  18. Imamichi Y, Menke A. Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition. Cells Tissues Organs 2007; 185(1–3): 180–190.

    PubMed  CAS  Google Scholar 

  19. Yan F, Hui YN, Li YJ, Guo CM, Meng H. Epidermal growth factor receptor in cultured human retinal pigment epithelial cells. Ophthalmologica 2007; 221(4): 244–250.

    PubMed  CAS  Google Scholar 

  20. Desban N, Lissitzky JC, Rousselle P, Duband JL. alpha1beta1-integrin engagement to distinct laminin-1 domains orchestrates spreading, migration and survival of neural crest cells through independent signaling pathways. J. Cell Sci. 2006; 119(Pt 15): 3206–3218.

    PubMed  CAS  Google Scholar 

  21. Matsumoto T, Yokote K, Tamura K, Takemoto M, Ueno H, Saito Y, Mori S. Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Ras-dependent pathway that is important for actin reorganization and cell migration. J. Biol. Chem. 1999; 274(20): 13954–13960.

    PubMed  CAS  Google Scholar 

  22. Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat. Rev. Mol. Cell Biol. 2004; 5(10): 816–826.

    PubMed  CAS  Google Scholar 

  23. Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W, Kikuchi A. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 2006; 66(21): 10439–10448.

    PubMed  CAS  Google Scholar 

  24. Abassi YA, Vuori K. Tyrosine 221 in Crk regulates adhesion-dependent membrane localization of Crk and Rac and activation of Rac signaling. EMBO J. 2002; 21(17): 4571–4582.

    PubMed  CAS  Google Scholar 

  25. Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD. Differential regulation of cell motility and invasion by FAK. J. Cell Biol. 2003; 160(5): 753–767.

    PubMed  CAS  Google Scholar 

  26. Rucci N, DiGiacinto C, Orru L, Millimaggi D, Baron R, Teti A. A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. J. Cell Sci. 2005; 118(Pt 15): 3263–3275.

    PubMed  CAS  Google Scholar 

  27. Kermorgant S, Zicha D, Parker PJ. PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J. 2004; 23(19): 3721–3734.

    PubMed  CAS  Google Scholar 

  28. Tian YC, Chen YC, Chang CT, Hung CC, Wu MS, Phillips A, et al. Epidermal growth factor and transforming growth factor-beta1 enhance HK-2 cell migration through a synergistic increase of matrix metalloproteinase and sustained activation of ERK signaling pathway. Exp. Cell Res. 2007; 313(11): 2367–2377.

    PubMed  CAS  Google Scholar 

  29. Mercer K, Giblett S, Oakden A, Brown J, Marais R, Pritchard C. A-Raf and Raf-1 work together to influence transient ERK phosphorylation and Gl/S cell cycle progression. Oncogene 2005; 24(33): 5207–5217.

    PubMed  CAS  Google Scholar 

  30. Kim SJ, Kim SY, Kwon CH, Kim YK. Differential effect of FGF and PDGF on cell proliferation and migration in osteoblastic cells. Growth Factors 2007; 25(2): 77–86.

    PubMed  CAS  Google Scholar 

  31. McCawley LJ, Li S, Wattenberg EV, Hudson LG. Sustained activation of the mitogen-activated protein kinase pathway. A mechanism underlying receptor tyrosine kinase specificity for matrix metalloproteinase-9 induction and cell migration. J. Biol. Chem. 1999; 274(7): 4347–4353.

    PubMed  CAS  Google Scholar 

  32. Krueger JS, Keshamouni VG, Atanaskova N, Reddy KB. Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene 2001; 20(31): 4209–4218.

    PubMed  CAS  Google Scholar 

  33. lin EJ, Opresko LK, Wells A, Wiley HS, Lauffenburger DA. EGF-receptor-mediated mammary epithelial cell migration is driven by sustained ERK signaling from autocrine stimulation. J. Cell Sci. 2007; 120(Pt 20): 3688–3699.

    Google Scholar 

  34. Suyama K, Shapiro I, Guttman M, Hazan RB. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2002; 2(4): 301–314.

    PubMed  CAS  Google Scholar 

  35. Pukac L, Huangpu J, Karnovsky MJ. Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration. Exp. Cell Res. 1998; 242(2): 548–560.

    PubMed  CAS  Google Scholar 

  36. Wu WS, Tsai RK, Chang CH, Wang S, Wu JR, Chang YX. Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Mol. Cancer Res. 2006; 4(10): 747–758.

    PubMed  CAS  Google Scholar 

  37. Levy Y, Ronen D, Bershadsky AD, Zick Y. Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. J. Biol. Chem. 2003; 278(16): 14533–14542.

    PubMed  CAS  Google Scholar 

  38. Meier F, Busch S, Gast D, Goppert A, Altevogt P, Maczey E, et al. The adhesion molecule L1 (CD171) promotes melanoma progression. Int. J. Cancer 2006; 119(3): 549–555.

    PubMed  CAS  Google Scholar 

  39. Woods D, Cherwinski H, Venetsanakos E, Bhat A, Gysin S, Humbert M, Bray PF, Saylor VL, McMahon M. Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Mol. Cell. Biol. 2001; 21(9): 3192–3205.

    PubMed  CAS  Google Scholar 

  40. Katz M, Amit I, Yarden Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim. Biophys. Acta 2007; 1773(8): 1161–1176.

    PubMed  CAS  Google Scholar 

  41. Silletti S, Yebra M, Perez B, Cirulli V, McMahon M, Montgomery AM. Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to L1 cell adhesion molecule-dependent motility and invasion. J. Biol. Chem. 2004; 279(28): 28880–28888.

    PubMed  CAS  Google Scholar 

  42. Ishibe S, Joly D, Liu ZX, Cantley LG. Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol. Cell 2004; 16(2): 257–267.

    PubMed  CAS  Google Scholar 

  43. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285(5430): 1028–1032.

    PubMed  CAS  Google Scholar 

  44. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 2006; 18(5): 516–523.

    PubMed  CAS  Google Scholar 

  45. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2002; 2(2): 91–100.

    PubMed  Google Scholar 

  46. Chiarugi P, Fiaschi T. Redox signalling in anchorage-dependent cell growth. Cell. Signal. 2007; 19(4): 672–682.

    PubMed  CAS  Google Scholar 

  47. Friedman A, Perrimon N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 2006; 444(7116): 230–234.

    PubMed  CAS  Google Scholar 

  48. Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu. Rev. Cell Dev. Biol. 2003; 19: 173–206.

    PubMed  CAS  Google Scholar 

  49. Borges E, Jan Y, Ruoslahti E. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J. Biol. Chem. 2000; 275(51): 39867–39873.

    PubMed  CAS  Google Scholar 

  50. Short SM, Boyer JL, Juliano RL. Integrins regulate the linkage between upstream and downstream events in G protein-coupled receptor signaling to mitogen-activated protein kinase. J. Biol. Chem. 2000; 275(17): 12970–12977.

    PubMed  CAS  Google Scholar 

  51. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 2006; 126(3): 489–502.

    PubMed  CAS  Google Scholar 

  52. Clemmons DR, Maile LA. Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Mol. Endocrinol. 2005; 19(1): 1–11.

    PubMed  CAS  Google Scholar 

  53. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 1996; 135(6 Pt 1): 1633–1642.

    PubMed  CAS  Google Scholar 

  54. Turner CE. Paxillin interactions. J. Cell Sci. 2000; 113(Pt 23): 4139–4140.

    PubMed  CAS  Google Scholar 

  55. Gilcrease MZ. Integrin signaling in epithelial cells. Cancer Lett. 2007; 247(1): 1–25.

    PubMed  CAS  Google Scholar 

  56. Li F, Zhang Y, Wu C. Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. J. Cell Sci. 1999; 112 (Pt 24): 4589–4599.

    PubMed  CAS  Google Scholar 

  57. Tu Y, Li F, Wu C. Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. Mol. Biol. Cell 1998; 9(12): 3367–3382.

    PubMed  CAS  Google Scholar 

  58. ffrench-Constant C, Colognato H. Integrins: versatile integrators of extracellular signals. Trends Cell Biol. 2004; 14(12): 678–686.

    PubMed  CAS  Google Scholar 

  59. Chan PC, Chen SY, Chen CH, Chen HC. Crosstalk between hepatocyte growth factor and integrin signaling pathways. J. Biomed. Sci. 2006; 13(2): 215–223.

    PubMed  CAS  Google Scholar 

  60. Playford, M. P. , Schaller, M. D. The interplay between Src and integrins in normal and tumor biology. Oncogene 2004; 23: 7928–7946.

    PubMed  CAS  Google Scholar 

  61. Mitra, S. K. , Schlaepfer, D. D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 2006; 18(5): 516–523.

    PubMed  CAS  Google Scholar 

  62. Zaidel-Bar R, Milo R, Kam Z, Geiger B. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J. Cell Sci. 2007; 120(Pt 1): 137–148.

    PubMed  CAS  Google Scholar 

  63. Brown MC, Turner CE. Paxillin: adapting to change. Physiol. Rev. 2004; 84(4): 1315–1339.

    PubMed  CAS  Google Scholar 

  64. Waters CM, Connell MC, Pyne S, Pyne NJ. c-Src is involved in regulating signal transmission from PDGFbeta receptor-GPCR(s) complexes in mammalian cells. Cell. Signal. 2005; 17(2): 263–277.

    PubMed  CAS  Google Scholar 

  65. Mon NN, Ito S, Senga T, Hamaguchi M. FAK signaling in neoplastic disorders: a linkage between inflammation and cancer. Ann. N. Y. Acad. Sci. 2006; 1086: 199–212.

    PubMed  CAS  Google Scholar 

  66. Park SY, Li H, Avraham S. RAFTK/Pyk2 regulates EGF-induced PC12 cell spreading and movement. Cell. Signal. 2007; 19(2): 289–300.

    PubMed  CAS  Google Scholar 

  67. Monami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV, Morrione A. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res. 2006; 66(14): 7103–7110.

    PubMed  CAS  Google Scholar 

  68. Lesslie DP, Summy JM, Parikh NU, Fan F, Trevino JG, Sawyer TK, Metcalf CA, Shakespeare WC, Hicklin DJ, Ellis LM, Gallick GE. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br. J. Cancer 2006; 94(11): 1710–1717.

    PubMed  CAS  Google Scholar 

  69. Ishibe S, Joly D, Zhu X, Cantley LG. Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol. Cell 2003; 12(5): 1275–1285.

    PubMed  CAS  Google Scholar 

  70. Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1998; 1(2): 183–192.

    PubMed  CAS  Google Scholar 

  71. West KA, Zhang H, Brown MC, Nikolopoulos SN, Riedy MC, Horwitz AF, Turner CE. The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J. Cell Biol. 2001; 154(1): 161–176.

    PubMed  CAS  Google Scholar 

  72. Nayal A, Webb DJ, Brown CM, Schaefer EM, Vicente-Manzanares M, Horwitz AR. Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J. Cell Biol. 2006; 173(4): 587–589.

    PubMed  CAS  Google Scholar 

  73. Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 1999; 145(4): 851–863.

    PubMed  CAS  Google Scholar 

  74. Lamorte L, Rodrigues S, Sangwan V, Turner CE, Park M. Crk associates with a multimolecular Paxillin/GIT2/beta-PIX complex and promotes Rac-dependent relocalization of Paxillin to focal contacts. Mol. Biol. Cell 2003; 14(7): 2818–2831.

    PubMed  CAS  Google Scholar 

  75. Shen Y, Lyons P, Cooley M, Davidson D, Veillette A, Salgia R, Griffin JD, Schaller MD. The noncatalytic domain of protein-tyrosine phosphatase-PEST targets paxillin for dephosphorylation in vivo. J. Biol. Chem. 2000; 275(2): 1405–1413.

    PubMed  CAS  Google Scholar 

  76. Sastry SK, Lyons PD, Schaller MD, Burridge K. PTP-PEST controls motility through regulation of Rac1. J. Cell Sci. 2002; 115(Pt 22): 4305–4316.

    PubMed  CAS  Google Scholar 

  77. Jamieson JS, Tumbarello DA, Hallé M, Brown MC, Tremblay ML, Turner CE. Paxillin is essential for PTP-PEST-dependent regulation of cell spreading and motility: a role for paxillin kinase linker. J. Cell Sci. 2005; 118(Pt 24): 5835–5847.

    PubMed  CAS  Google Scholar 

  78. Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Nat. Rev. Cancer 2007; 7(4): 281–294.

    PubMed  CAS  Google Scholar 

  79. Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006; 25(4): 695–705.

    PubMed  CAS  Google Scholar 

  80. Lipscomb EA, Mercurio AM. Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Rev. 2005; 24(3): 413–423.

    PubMed  CAS  Google Scholar 

  81. Oka M, Kikkawa U. Protein kinase C in melanoma. Cancer Metastasis Rev. 2005; 24(2): 287–300.

    PubMed  CAS  Google Scholar 

  82. Kiley SC, Clark KJ, Goodnough M, Welch DR, Jaken S. Protein kinase C delta involvement in mammary tumor cell metastasis. Cancer Res. 1999; 59(13): 3230–3238.

    PubMed  CAS  Google Scholar 

  83. Pan Q, Bao LW, Kleer CG, Sabel MS, Griffith KA, Teknos TN, et al. Protein kinase C epsilon is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy. Cancer Res. 2005; 65(18): 8366–8371.

    PubMed  CAS  Google Scholar 

  84. Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med. 2000; 28(9): 1349–1361.

    PubMed  CAS  Google Scholar 

  85. Gomez DE, Skilton G, Alonso DF, Kazanietz MG. The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (Review). Oncol. Rep. 1999; 6(6): 1363–1370.

    PubMed  CAS  Google Scholar 

  86. Guan CX, Cui YR, Zhang M, Bai HB, Khunkhun R, Fang X. Intracellular signaling molecules involved in vasoactive intestinal peptide-mediated wound healing in human bronchial epithelial cells. Peptides 2007; 28(9): 1667–1673.

    PubMed  CAS  Google Scholar 

  87. Keshamouni VG, Mattingly RR, Reddy KB. Mechanism of 17-beta-estradiol-induced Erk1/2 activation in breast cancer cells. A role for HER2 AND PKC-delta. J. Biol. Chem. 2002; 277(25): 22558–22565.

    PubMed  CAS  Google Scholar 

  88. Besson A, Davy A, Robbins SM, Yong VW. Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. Oncogene 2001; 20(50): 7398–7407.

    PubMed  CAS  Google Scholar 

  89. Pukac L, Huangpu J, Karnovsky MJ. Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration. Exp. Cell Res. 1998; 242(2): 548–560.

    PubMed  CAS  Google Scholar 

  90. Rigot V, Lehmann M, Andre F, Daemi N, Marvaldi J, Luis J. Integrin ligation and PKC activation are required for migration of colon carcinoma cells. J. Cell Sci. 1998; 111(Pt 20): 3119–3127.

    PubMed  CAS  Google Scholar 

  91. Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell. Signal. 2006; 18(3): 276–284.

    PubMed  CAS  Google Scholar 

  92. Disatnik MH, Rando TA. Integrin-mediated muscle cell spreading. The role of protein kinase C in outside-in and inside-out signaling and evidence of integrin cross-talk. J. Biol. Chem. 1999; 274(45): 32486–32492.

    PubMed  CAS  Google Scholar 

  93. Rabinovitz I, Tsomo L, Mercurio AM. Protein kinase C-alpha phosphorylation of specific serines in the connecting segment of the beta 4 integrin regulates the dynamics of type II hemidesmosomes. Mol. Cell. Biol. 2004; 24(10): 4351–4360.

    PubMed  CAS  Google Scholar 

  94. Parsons M, Keppler MD, Kline A, Messent A, Humphries MJ, Gilchrist R, et al. Site-directed perturbation of protein kinase C-integrin interaction blocks carcinoma cell chemotaxis. Mol. Cell. Biol. 2002; 22(16): 5897–5911.

    PubMed  CAS  Google Scholar 

  95. Nomura N, Nomura M, Sugiyama K, Hamada J. Src regulates phorbol 12-myristate 13-acetate-activated PKC-induced migration via Cas/Crk/Rac1 signaling pathway in glioblastoma cells. Int. J. Mol. Med. 2007; 20(4): 511–519.

    PubMed  CAS  Google Scholar 

  96. Lee MS, Kim YB, Lee SY, Kim JG, Kim SH, Ye SK, Lee JW. Integrin signaling and cell spreading mediated by phorbol 12-myristate 13-acetate treatment. J. Cell Biochem. 2006; 99(1): 88–95.

    PubMed  CAS  Google Scholar 

  97. De Nichilo MO, Yamada KM. Integrin alpha v beta 5-dependent serine phosphorylation of paxillin in cultured human macrophages adherent to vitronectin. J. Biol. Chem. 1996; 271(18): 11016–11022.

    PubMed  Google Scholar 

  98. Doan AT, Huttenlocher A. RACK1 regulates Src activity and modulates paxillin dynamics during cell migration. Exp. Cell Res. 2007; 313(12): 2667–2679.

    PubMed  CAS  Google Scholar 

  99. Nomura N, Nomura M, Mizuki N, Hamada J. Rac1 mediates phorbol 12-myristate 13-acetate-induced migration of glioblastoma cells via paxillin. Oncol. Rep. 2008; 20(4): 705–711.

    PubMed  CAS  Google Scholar 

  100. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr. Med. Chem. 2004; 11(9): 1163–1182.

    PubMed  CAS  Google Scholar 

  101. Aslan M, Ozben T. Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxid. Redox. Signal. 2003; 5(6): 781–788.

    PubMed  CAS  Google Scholar 

  102. Chiarugi P. PTPs versus PTKs: the redox side of the coin. Free Radic. Res. 2005; 39(4): 353–364.

    PubMed  CAS  Google Scholar 

  103. Giles GI. The redox regulation of thiol dependent signaling pathways in cancer. Curr. Pharm. Des. 2006; 12(34): 4427–4443.

    PubMed  CAS  Google Scholar 

  104. Chandel NS, Budinger GR. The cellular basis for diverse responses to oxygen. Free Radic. Biol. Med. 2007; 42(2): 165–174.

    PubMed  CAS  Google Scholar 

  105. Pervaiz S. Pro-oxidant milieu blunts scissors: insight into tumor progression, drug resistance, and novel druggable targets. Curr. Pharm. Des. 2006; 12(34): 4469–4477.

    PubMed  CAS  Google Scholar 

  106. Cheng GC, Schulze PC, Lee RT, Sylvan J, Zetter BR, Huang H. Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. Exp. Cell Res. 2004; 300(2): 297–307.

    PubMed  CAS  Google Scholar 

  107. Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S, et al. Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 2006; 25(26): 3689–3698.

    PubMed  CAS  Google Scholar 

  108. Park IJ, Hwang JT, Kim YM, Ha J, Park OJ. Differential modulation of AMPK signaling pathways by low or high levels of exogenous reactive oxygen species in colon cancer cells. Ann. N. Y. Acad. Sci. 2006; 1091: 102–109.

    PubMed  CAS  Google Scholar 

  109. Jagadeeswaran R, Jagadeeswaran S, Bindokas VP, Salgia R. Activation of HGF/c-Met pathway contributes to the reactive oxygen species generation and motility of small cell lung cancer cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2007; 292(6): L1488–L1494.

    PubMed  CAS  Google Scholar 

  110. Nishigori C, Hattori Y, Toyokuni S. Role of reactive oxygen species in skin carcinogenesis. Antioxid. Redox. Signal. 2004; 6(3): 561–570.

    PubMed  CAS  Google Scholar 

  111. Miura D, Miura Y, Yagasaki K. Resveratrol inhibits hepatoma cell invasion by suppressing gene expression of hepatocyte growth factor via its reactive oxygen species-scavenging property. Clin. Exp. Metastasis 2004; 21(5): 445–451.

    PubMed  CAS  Google Scholar 

  112. Nimnual AS, Taylor LJ, Bar-Sagi D. Redox-dependent downregulation of Rho by Rac. Nat. Cell Biol. 2003; 5(3): 236–241.

    PubMed  CAS  Google Scholar 

  113. Voncken JW, van Schaick H, Kaartinen V, Deemer K, Coates T, Landing B, et al. Increased neutrophil respiratory burst in bcr-null mutants. Cell 1995; 80(5): 719–728.

    PubMed  CAS  Google Scholar 

  114. Bokoch GM, Knaus UG. NADPH oxidases: not just for leukocytes anymore! Trends Biochem. Sci. 2003; 28(9): 502–508.

    PubMed  CAS  Google Scholar 

  115. Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY, et al. Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 2005; 435(7040): 347–353.

    PubMed  CAS  Google Scholar 

  116. Arakaki N, Kajihara T, Arakaki R, Ohnishi T, Kazi JA, Nakashima H, et al. Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. J. Biol. Chem. 1999; 274(19): 13541–13546.

    PubMed  CAS  Google Scholar 

  117. Colavitti R, Pani G, Bedogni B, Anzevino R, Borrello S, Waltenberger J, et al. Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J. Biol. Chem. 2002; 277(5): 3101–3108.

    PubMed  CAS  Google Scholar 

  118. Werner E, Werb Z. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J. Cell Biol. 2002; 158(2): 357–368.

    PubMed  CAS  Google Scholar 

  119. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120(5): 649–661.

    PubMed  CAS  Google Scholar 

  120. Chen CC, Young JL, Monzon RI, Chen N, Todorovic V, Lau LF. Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J. 2007; 26(5): 1257–1267.

    PubMed  CAS  Google Scholar 

  121. Chiarugi P. Reactive oxygen species as mediators of cell adhesion. Ital. J. Biochem. 2003; 52(1): 28–32.

    PubMed  CAS  Google Scholar 

  122. Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, et al. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J. Cell Biol. 2003; 161(5): 933–944.

    PubMed  CAS  Google Scholar 

  123. Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY, et al. Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 2005; 435(7040): 347–353.

    PubMed  CAS  Google Scholar 

  124. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 2002; 9(2): 387–399.

    PubMed  CAS  Google Scholar 

  125. Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A, et al. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 2007; 133(5): 1637–1648.

    PubMed  CAS  Google Scholar 

  126. Gozin A, Franzini E, Andrieu V, Da Costa L, Rollet-Labelle E, Pasquier C. Reactive oxygen species activate focal adhesion kinase, paxillin and p130cas tyrosine phosphorylation in endothelial cells. Free Radic. Biol. Med. 1998; 25(9): 1021–1032.

    PubMed  CAS  Google Scholar 

  127. Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW. Novel role of gp91(phox) containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ. Res. 2002; 91(12): 1160–1167.

    PubMed  CAS  Google Scholar 

  128. Wu RF, Xu YC, Ma Z, Nwariaku FE, Sarosi GA Jr, Terada LS. Subcellular targeting of oxidants during endothelial cell migration. J. Cell Biol. 2005; 171(5): 893–904.

    PubMed  CAS  Google Scholar 

  129. Xu YC, Wu RF, Gu Y, Yang YS, Yang MC, Nwariaku FE, Terada LS. Involvement of TRAF4 in oxidative activation of c-Jun N-terminal kinase. J. Biol. Chem. 2002; 277(31): 28051–28057.

    PubMed  CAS  Google Scholar 

  130. Zhang J, Zhang LX, Meltzer PS, Barrett JC, Trent JM. Molecular cloning of human Hic-5, a potential regulator involved in signal transduction and cellular senescence. Mol. Carcinog. 2000; 27(3): 177–183.

    PubMed  CAS  Google Scholar 

  131. Turner CE, Brown MC, Perrotta JA, Riedy MC, Nikolopoulos SN, McDonald AR, Bagrodia S, Thomas S, Leventhal PS. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 1999; 145(4): 851–863.

    PubMed  CAS  Google Scholar 

  132. Matsuya M, Sasaki H, Aoto H, Mitaka T, Nagura K, Ohba T, Ishino M, Takahashi S, Suzuki R, Sasaki T. Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. J. Biol. Chem. 1998; 273(2): 1003–1014.

    PubMed  CAS  Google Scholar 

  133. Nishiya N, Iwabuchi Y, Shibanuma M, Côté JF, Tremblay ML, Nose K. Hic-5, a paxillin homologue, binds to the protein-tyrosine phosphatase PEST (PTP-PEST) through its LIM 3 domain. J. Biol. Chem. 1999; 274(14): 9847–9853.

    PubMed  CAS  Google Scholar 

  134. Lee K, Esselman WJ. Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radic. Biol. Med. 2002; 33(8): 1121–1132.

    PubMed  CAS  Google Scholar 

  135. Greene EL, Lu G, Zhang D, Egan BM. Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension 2001; 37(2): 308–312.

    PubMed  CAS  Google Scholar 

  136. Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med. 2000; 28(9): 1349–1361.

    PubMed  CAS  Google Scholar 

  137. Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic. Biol. Med. 2000; 28(9): 1387–1404.

    PubMed  CAS  Google Scholar 

  138. Lin D, Takemoto DJ. Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. J. Biol. Chem. 2005; 280(14): 13682–13693.

    PubMed  CAS  Google Scholar 

  139. Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M, Sonoda N, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J. Am. Soc. Nephrol. 2003; 14(8 Suppl 3): S227–S232.

    PubMed  CAS  Google Scholar 

  140. Lee HB, Yu MR, Yang Y, Jiang Z, Ha H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J. Am. Soc. Nephrol. 2003; 14(8 Suppl 3): S241–S245.

    PubMed  CAS  Google Scholar 

  141. Frey RS, Gao X, Javaid K, Siddiqui SS, Rahman A, Malik AB. Phosphatidylinositol 3-kinase gamma signaling through protein kinase Czeta induces NADPH oxidase-mediated oxidant generation and NF-kappaB activation in endothelial cells. J. Biol. Chem. 2006; 281(23): 16128–16138.

    PubMed  CAS  Google Scholar 

  142. Kwan J, Wang H, Munk S, **a L, Goldberg HJ, Whiteside CI. In high glucose protein kinase C-zeta activation is required for mesangial cell generation of reactive oxygen species. Kidney Int. 2005; 68(6): 2526–2541.

    PubMed  CAS  Google Scholar 

  143. **a L, Wang H, Goldberg HJ, Munk S, Fantus IG, Whiteside CI. Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. Am. J. Physiol. Renal. Physiol. 2006; 290(2): F345–F356.

    PubMed  CAS  Google Scholar 

  144. Talior I, Tennenbaum T, Kuroki T, Eldar-Finkelman H. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am. J. Physiol. Endocrinol. Metab. 2005; 288(2): E405–E411.

    PubMed  CAS  Google Scholar 

  145. Lee HB, Yu MR, Song JS, Ha H. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney Int. 2004; 65(4): 1170–1179.

    PubMed  CAS  Google Scholar 

  146. Chen CC. Protein kinase C alpha, delta, epsilon and zeta in C6 glioma cells. TPA induces translocation and down-regulation of conventional and new PKC isoforms but not atypical PKC zeta. FEBS Lett. 1999; 332(1–2): 169–173.

    Google Scholar 

Download references

Acknowledgement

We thank the financial support from National Science council in Taiwan for the studies relevant to ROS-mediated signal transduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Sheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hu, CT., Wu, JR., Wu, WS. (2010). Signal Cross Talks for Sustained MAPK Activation and Cell Migration Mediated by Reactive Oxygen Species: The Involvement in Tumor Progression. In: Wu, WS., Hu, CT. (eds) Signal Transduction in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9522-0_7

Download citation

Publish with us

Policies and ethics

Navigation