Symbioses and Stress

  • Chapter
  • First Online:
Symbioses and Stress

Abstract

The “living together of unlike organisms” in symbiosis implies the confrontation of different physiological properties and ecological preferences. To be successful, organisms in association need to resolve these differences and to account for situations of stress experienced by the symbiotic partners. In the following, we will review aspects of symbiosis and stress from several perspectives and elaborate on some general patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 353.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 353.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez, P., White, J.F. Jr, Gil, N., Svenning, J.C., Balslev, H. and Kristiansen, T. (2008) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and host tree recruitment. Nature Proceedings http://hdl.handle.net/10101/npre.2008.1908.1

  • Bacon, C.W., Porter, J.K., Robbins, J.D. and Luttrell, E.S. (1977) Epichloë typhina from toxic tall fescue grasses. Appl. Environ. Microbiol. 34: 576–581.

    PubMed  CAS  Google Scholar 

  • Baker, A.C., Starger, C.J., McClanahan, T.R. and Glynn, P.W. (2004) Corals’ adaptive response to climate change. Nature 430: 741.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, P., Baumann, L. and Clark, M.A. (1996) Levels of Buchnera aphidicola chaperonin GroEL during growth of the aphic Schizaphis graminum. Curr. Microbiol. 32: 279–285.

    Article  CAS  Google Scholar 

  • Berg, G. (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11–8.

    Article  PubMed  CAS  Google Scholar 

  • Berg, G. and Smalla, K. (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom, C. and Lachmann, M. (2003) The Red King effect: when the slowest runner wins the coevolutionary race. Proc. Natl. Acad. Sci. U.S.A. 100: 593–598.

    Article  PubMed  CAS  Google Scholar 

  • Blaha, J., Baloch, E. and Grube, M. (2006) High photobiont diversity in symbioses of the euryoecious lichen Lecanora rupicola (Lecanoraceae, Ascomycota). Biol. J. Linn. Soc. 88: 283–293.

    Article  Google Scholar 

  • Brune, A. (2005) Symbiotic associations between termites and prokaryotes, In: M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer and E. Stackebrandt (eds.), The Prokaryotes: An Online Electronic Resource for the Microbiological Community, 3rd edn., release 3.20. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Cheplick, G.P. (2007) Costs of fungal endophyte infection in Lolium perenne genotypes from Eurasia and North Africa under extreme resource limitation. Environ. Exp. Bot. 60: 202–210.

    Article  Google Scholar 

  • Clay, K. (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69: 10–16.

    Article  Google Scholar 

  • Dale, C. and Moran, N. (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126: 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Degnan, P.H. and Moran, N.A. (2008) Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol. Ecol. 17: 916–29.

    Article  PubMed  CAS  Google Scholar 

  • Degnan, P.H., Yu, Y., Sisneros, N., Wing, R.A. and Moran N.A. (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc. Natl. Acad. Sci. U.S.A. 106: 9063–9068.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, E.A. (1994) Symbiotic Interactions. Oxford University Press, New York, Oxford.

    Google Scholar 

  • Dunbar, H.E., Wilson, A.C., Ferguson, N.R. and Moran, N.A. (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol. 5: e96.

    Article  PubMed  Google Scholar 

  • Duke, S.E., Jackson, R.B. and Caldwell, M.M. (1994) Local reduction of mycorrhizal arbuscule frequency in enriched soil microsites. Can. J. Bot. 72: 998–1001.

    Article  Google Scholar 

  • Egerton-Warburton, L.M., Collins, N.J. and Allen, E.B. (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol. Monogr. 77: 527–544.

    Article  Google Scholar 

  • Germida, J.J. and Siciliano, S.D. (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol. Fertility Soils 33: 410–415.

    Article  Google Scholar 

  • Grube, M., Cardinale, M., Vieira de Castro, J., Müller, H. and Berg, G. (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J. 3: 1105–1115.

    Article  PubMed  Google Scholar 

  • Hammond, T.M., Andrewski, M.D., Roosinck, M.J. and Keller, N.P. (2008) Aspergillus mycoviruses are targets and suppressors of RNA silencing. Eukar. Cell 7: 350–357.

    Article  CAS  Google Scholar 

  • Herrero, N., Sánchez Márquez, S. and Zabalgogeazcoa, I. (2009) Mycoviruses are common among different species of endophytic fungi of grasses. Arch. Vir. 154: 327–330.

    Article  CAS  Google Scholar 

  • Hughes, D.P., Pierce, N.E. and Boomsma, J.J. (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23: 672–677.

    Article  PubMed  Google Scholar 

  • Jaenike, J., Dyer, K.A., Cornish, C. and Minhas, M.S. (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 4: e325.

    Article  PubMed  Google Scholar 

  • Janzen, D.H. (1985) The natural history of mutualisms, In: D.H. Baucher (ed.), The Biology of Mutualisms. Oxford University Press. New York. pp. 40–99.

    Google Scholar 

  • Kranner, I., Cram, W.J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E. and Pfeifhofer, H.W. (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl. Acad. Sci. U.S.A. 102: 3141–3146.

    Article  PubMed  CAS  Google Scholar 

  • Lawrey, J.D. (2009) Chemical defense in lichen symbiosis, In: J.F. White and M.S. Torres (eds.), Defensive Mutualism in Microbial Symbiosis. CRC Press, Boca Raton, FL, pp. 167–181.

    Google Scholar 

  • Lawrey, J.D. and Diederich, P. (2003) Lichenicolous fungi: interactions, evolution and biodiversity. Bryologist 106: 80–120.

    Article  Google Scholar 

  • Jargeat, P., Cosseau, C., Oláh, B., Jauneau, A., Bonfante, P., Batut, J. and Bécard, G. (2004) Isolation, free-living capacities, and genome structure of “Candidatus Glomeribacter gigasporarum,” the endodellular bacterium of the mycorrhizal fungus Gigaspora margarita. J. Bacteriol. 186: 6876–6884.

    Article  PubMed  CAS  Google Scholar 

  • Little, A.E.F. and Currie, C.R. (2008) Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89: 1216–1222.

    Article  PubMed  Google Scholar 

  • Jeon, K.W. (1972) Development of cellular dependence on infective organisms: micrurgical studies in amoebas. Science 176: 1122–1123.

    Article  PubMed  CAS  Google Scholar 

  • Lehtonen, P.T., Helander, M., Siddiqui, S.A., Lehto, K. and Saikkonen, K. (2006) Endophytic fungus decreases plant visus infections in meadow ryegrass (Lolium pratense). Biol. Lett. 2: 620–623.

    Article  PubMed  Google Scholar 

  • Lutzoni, F., Pagel, M. and Reeb, V. (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411: 937–940.

    Article  PubMed  CAS  Google Scholar 

  • Malinowski, M., Belesky, D.P. and Lewis, G.C. (2005) Abiotic stresses in endophytic grasses, In: C. Roberts, C.P. West and D.E. Spiers (eds.), Neotyphodium in Cool Season Grasses. Blackwell, Ames, IA, pp. 187–199.

    Chapter  Google Scholar 

  • Margulis, L. and Fester, R. (eds.) (1991) Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis. MIT Press, Boston, MA.

    Google Scholar 

  • Márquez, L.M., Redman, R.S., Rodriguez, R.J. and Roossinck, M.J. (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 63, 545–558.

    Google Scholar 

  • McLellan, C.A., Turbyville, T.J., Wireratne, E.M.K., Kerschen, A., Vierling, E., Queitsch, C., Whitesell, L. and Gunatilaka A.A.L. (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Pl. Physiol. 145: 174–182.

    Article  CAS  Google Scholar 

  • Moran, N.A., Degnan, P.H., Santos, S.R., Dunbar, H.E. and Ochman, H. (2005) The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl. Acad. Sci. U.S.A. 102: 16919–16926.

    Article  PubMed  CAS  Google Scholar 

  • Moran, N.A., McCutcheon, J.P. and Nakabachi, A. (2008) Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42: 165–190.

    Article  PubMed  CAS  Google Scholar 

  • Moran, N.A., Mc Laughlin, H.J. and Sorek, R. (2009) The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323: 279–382.

    Article  Google Scholar 

  • Nakabachi, A., Yamashita, A., Toh, H., Ishikawa, H., Dunbar, H.E., Moran, N.A. and Hattori M. (2006) The 160-kilobase genome of the bacterial Endosymbiont Carsonella. Science 314: 267.

    Article  PubMed  CAS  Google Scholar 

  • Noë, R. and Hammerstein, P. (1994) Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav. Ecol. Sociobiol. 35: 1–11.

    Article  Google Scholar 

  • Partida-Martinez, L.P. and Hertweck, C. (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437: 884–888.

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez, L.P. and Hertweck, C. (2007a) A gene cluster encoding rhizoxin biosynthesis in Burkholderia rhizoxina, the bacterial endosymbiont of the fungus Rhizopus microsporus. Chem. Biochem. 8: 41–45.

    CAS  Google Scholar 

  • Partida-Martinez, L.P., Monajembashi, S., Greulich, K.-O. and Hertweck, C. (2007b) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr. Biol. 17: 773–777.

    Article  PubMed  CAS  Google Scholar 

  • Pinto-Tomás, A.A., Anderson, M.A., Suen, G., Stevenson, D.M., Chu, F.S.T., Cleland, W.W., Weimer, P.J. and Currie, C.R. (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326: 1120–1123.

    Article  PubMed  Google Scholar 

  • Pozo, M.J. and Azcón-Aguilar, C. (2007) Unraveling mycorrhiza-induced resistance. Curr. Op. Plant Biol. 10: 393–398.

    Article  CAS  Google Scholar 

  • Rajilic-Stojanovic, M., Smidt, H. and Vos, W.M. de (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol. 9: 2125–2136.

    Article  PubMed  Google Scholar 

  • Redman, R.S., Freeman, S., Clifton, D.R., Morrel, J., Brown, G. and Rodriguez, R.J. (2001) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Pl. Physiol. 119: 795–804.

    Article  Google Scholar 

  • Rodriguez, R. and Redman, R. (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J. Exp. Bot. 59: 1109–1114.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, R.J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y.O. and Redman, R.S. (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2: 404–416.

    Article  PubMed  Google Scholar 

  • Sapp, J. (2003) Genesis – The Evolution of Biology. Oxford University Press, New York.

    Google Scholar 

  • Schardl, C. and Leuchtmann, A. (2005) The Epichloe endophytes of grasses and the symbiotic continuum, In: J. Dighton, J.F. White, P. Oudemans (eds.), The Fungal Community: Its Organisation and Role in the Ecosystem. Taylor & Francis, Boca Raton, FL, pp. 475–503.

    Google Scholar 

  • Schardl, C.L, Leuchtmann, A. and Spiering, M.J. (2004) Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55: 315–340.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, I., Partida-Martinez, L.P., Winkler, R., Voigt, K., Einax, E., Dölz, F., Telle, S., Wöstemeyer, J. and Hertweck C. (2008) Evolution of host resistance in a toxin-producing bacterial-fungal alliance. ISME J. 2: 632–641.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, B. and Boyle, C. (2005) The endophytic continuum. Mycol. Res. 109: 661–686.

    Article  PubMed  Google Scholar 

  • Schüßler, A. and Kluge, M. (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research, In: B. Hock (ed.), The Mycota. Fungal Associations, Vol. 9. Springer-Verlag, Berlin, pp. 151–161.

    Google Scholar 

  • Schüßler, A., Mollenhauer, D., Schnepf, E. and Kluge, M. (1994) Geosiphon pyriforme, an endosymbiotic association of fungus and cyanobacteria: the spore structure resembles that of arbuscular mycorrhizal (AM) fungi. Bot. Acta 107: 36–45.

    Google Scholar 

  • Smalla, K., Wieland, G., Buchner, A., Zock, A., Parzy, J., Roskot, N., Heuer, H. and Berg, G. (2001) Bacterial bulk and rhizosphere communities studied by denaturing gradient gel electrophoresis of PCR-amplified fragments of 16S rRNA genes: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742–4751.

    Article  PubMed  CAS  Google Scholar 

  • Soto, M.J., Sanjuán, J. and Olivares, J. (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152: 3167–3174.

    Article  PubMed  CAS  Google Scholar 

  • Soto, M.J., Dominguez-Ferreras, A., Perez-Mendoza, D., Sanjuan, J. and Olivares, J. (2009) Mutualism versus pathogenesis: the give-and-take in plant–bacteria interactions. Cell. Microbiol. 11: 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H.J. and Friedman, E.I. (2005) Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: II – verification. Microbial Ecol. 49: 528–35.

    Article  Google Scholar 

  • Starr, M.P. (1975) A generalized scheme for classifying organismic associations. Symp. Soc. Exp. Biol. 29: 1–20.

    PubMed  Google Scholar 

  • Stein, E., Molitor, A., Kogel, K-H. and Waller, F. (2008) Systemic resistance in Arabidopsis conferred by the mycorrhiza fungus Piriformospora indica requires jasmonic acid signalling and the cytoplasmic function of NPR1. Pl. Cell. Physiol. 49: 1747–1751.

    Article  CAS  Google Scholar 

  • Vadassery, J., Ranf, S., Drzewiecki, C., Mithöfer, A., Mazars, C., Scheel, D., Lee, J. and Oelmüller, R. (2009) A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J. 59: 193–206.

    Article  PubMed  CAS  Google Scholar 

  • Volz, F. (2004) Molekularbiologische und physiologische Untersuchungen zum Phosphattransport bei Geosiphon pyriforme. Ph.D. thesis, Technischen Universität, Darmstadt, Germany.

    Google Scholar 

  • Von Dohlen, C.D., Kohler, S., Alsop, S.T. and McManus, W.R. (2001) Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412: 433–436.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, M. (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Ann. Rev. Microbiol. 63: 411–429.

    Article  CAS  Google Scholar 

  • Waller, F., Achatz, B., Baltruschat, H., Becker, K., Fischer, M., Fodor, J., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P. and Kogel, K-H. (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. U.S.A. 102: 13386–13391.

    Article  PubMed  CAS  Google Scholar 

  • White, J.F., Jr., Sullivan, R., Balady, G., Gianfagna, T., Yue, Q., Meyer, W. and Cabral, D. (2001) A fungal endosymbiont of the grass Bromus setifolius: distribution in some Andean populations, identification, and examination of beneficial properties. Symbiosis 31: 241–257.

    Google Scholar 

  • Weissman, L., Garty, J. and Hochman, A. (2005) Characterization of enzymatic antioxidants in the lichen Ramulina lacera and their response to rehydration. Appl. Environ. Microbiol. 71: 6508–6514.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, J.L., Dunbar, H.E., Wolfinger, R.D. and Moran, N.A. (2003) Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol. Microbiol. 48: 1491–1500.

    Article  PubMed  CAS  Google Scholar 

  • Wu, D., Daugherty, S.C., Van Aken, S.E., Pai, G.H., Watkins, K.L., Khouri, H., Tallon, L.J., Zaborsky, J.M., Dunbar, H.E., Tran, P.L., Moran, N.A. and Eisen, J.A. (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 4: e188.

    Article  PubMed  Google Scholar 

  • Yoder, J.A., Benoit, J.B, Denlinger, D.L., Tank, J.L. and Zettler, L.W. (2008) An endosymbiotic conidial fungus, Scopulariopsis brevicaulis, protects the American dog tick, Dermacentor variabilis, from desiccation imposed by an entomopathogenic fungus. J. Invertebr. Pathol. 97: 119–127.

    Article  PubMed  Google Scholar 

  • Zook, D. (1998) A new symbiosis language. ISS Symbiosis News 1: 1–3.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Gabriele Berg (Graz) and Ilse Kranner (London) for comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Grube, M., White, J.F., Seckbach, J. (2010). Symbioses and Stress. In: Seckbach, J., Grube, M. (eds) Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9449-0_2

Download citation

Publish with us

Policies and ethics

Navigation