Estimation of the Explosive Boiling Limit of Metastable Liquids

  • Conference paper
Metastable Systems under Pressure

Abstract

Condensed matters (liquids, glasses and solids) can be overheated or stretched only up to a limit. Within mean-field approximation, this limit is the so-called spinodal. This is the final limit for overheating, and therefore it is a very important quantity for safety calculations wherever high pressure- high temperature liquids are involved. In temperature-pressure space the spinodal is represented by a curve, starting from the liquid-vapour critical point and decreasing with decreasing temperatures down to the negative pressure region. The determination of the spinodal is a very difficult theoretical and a more-or-less impossible experimental task. By extrapolating chosen quantities, one might get the so-called pseudo-spinodal, a limit close to the real one. Based on a recently developed method, the pseudo-spinodal pressure (for given temperature) of water and helium-3 are determined, using liquid-vapour surface tension, interface thickness and vapour pressure data. The method is already proven to be valid for Lennard-Jones argon (a simple fluid), for carbon-dioxide (a molecular fluid), for helium-4 (a quantum fluid), and the Shan-Chen fluid (a mesoscopic fluid).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pinhasi, G. A., and Ullman, A., Dayan, A. (2005) Modeling of flashing two-phase flow, Rev. Chem. Eng. 21, 133–264

    Google Scholar 

  2. Abbasi, T., and Abbasi, S.A. (2007) Accidental risk of superheated liquids and a framework for predicting the superheat limit, J. Loss Prevent. Process Ind. 20, 165–181

    Article  Google Scholar 

  3. Tiselj, I., and Gale, J. (2008) Integration of unsteady friction models in pipe flow simulations, J. Hydraulic Res. 46, 526–535.

    Article  Google Scholar 

  4. Baidakov, V.G. (1994) Thermophysical properties of superheated liquids, Sov. Tech. Rev. B. Therm. Phys. 5, 1–88

    Google Scholar 

  5. Debenedetti, P.G. (1996) Metastable Liquids: Concepts and Principles, Princeton University Press, Princeton, NJ.

    Google Scholar 

  6. Imre, A.R., Maris, H.J., and Williams P.R. (Eds.) (2002) Liquids Under Negative Pressure (NATO Science Series), Kluwer, Dordrecht

    Google Scholar 

  7. Skripov, V.P., and Faizullin, M.Z. (2006) Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity, Wiley-VCH

    Google Scholar 

  8. Herbert, E., Balibar, S., and Caupin, F. (2006) Cavitation pressure in water, Phys. Rev. E, 74, 041603

    Article  ADS  Google Scholar 

  9. Šponer, J. (1990) The Dependence of Cavitation Threshold on Ultrasonic Frequency. Czech. J. Phys. B 40, 1123–1132

    Article  ADS  Google Scholar 

  10. Kiselev, S.B., and Ely, J.F. (2001) Curvature effect on the physical boundary of metastable states in liquids, Physica A 299, 357–370

    Article  ADS  Google Scholar 

  11. Skripov, V.P. (1974) Metastable Liquids, Wiley, New York

    Google Scholar 

  12. Trevena, D.H. (1987) Cavitation and Tension in Liquids, Adam Hilger, Bristol

    Google Scholar 

  13. Imre, A., and Van Hook, W.A. (1998) Liquid-liquid equilibria in polymer solutions at negative pressure, Chem. Soc. Rev. 27, 117–123

    Article  Google Scholar 

  14. Imre, A., Martinás, K., and Rebelo, L.P.N. (1998) Thermodynamics of Negative Pressures in Liquid, J. Non-Equilib. Thermodyn. 23, 351–375

    Article  MATH  ADS  Google Scholar 

  15. Kraska, T. (2004) Stability limits of pure substances: An investigation based on equations of state, Ind.&Eng. Chem. Res. 43, 6213–6221

    Article  Google Scholar 

  16. Imre, A.R., Mayer, G., Házi, G., Rozas, R., and Kraska, T. (2008) Estimation of the liquid-vapor spinodal from interfacial properties obtained from molecular dynamics and lattice Boltzmann simulations, J. Chem. Phys. 128, 114708

    Article  ADS  Google Scholar 

  17. Imre, A.R., and Kraska, T. (2008) Liquid-vapour spinodal of pure helium-4, Physica B 403, 3663–3666

    Article  ADS  Google Scholar 

  18. Römer, F., Imre, A.R., and Kraska, T. (2009) The relation of interface properties and bulk phase stability: MD simulations of carbon dioxide, J. Chem. Phys., submitted

    Google Scholar 

  19. Huang, Y.H., and Chen G.B. (2006) A practical vapor pressure equation for helium-3 from 0.01 K to the critical point, Cryogenics 46, 833–839.

    Article  ADS  Google Scholar 

  20. Dyugaev, A.M., and Grigoriev, P.D. (2003) Surface tension of pure liquid helium isotopes, JETP Letters 48, 466–470

    ADS  Google Scholar 

  21. Barranco, M., Pi, M., Polls, A., and Vinas, X. (1990) The surface tension of liquid He-3 above 200 mK — A density-functional approach, J. Low Temp. Phys. 80, 77–88

    Article  ADS  Google Scholar 

  22. Rivkin, S.L., and Aleksandrov, A.A. (1980) Thermal properties of water and steam, Energia, Moskva

    Google Scholar 

  23. Caupin, F. (2005) Liquid-vapor interface, cavitation, and the phase diagram of water, Phys. Rev. E 71, 051605

    Article  ADS  Google Scholar 

  24. Wagner, W., and Pruss A. (2002) The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, J. Phys. Chem. Ref. Data 31, 2, 387–535

    Article  ADS  Google Scholar 

  25. Todreas, N.E., and Kazimi M.S. (1990) Nuclear Systems I: Thermal Hydraulic Fundamentals, Hemisphere, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila R. Imre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Imre, A.R., Házi, G., Kraska, T. (2010). Estimation of the Explosive Boiling Limit of Metastable Liquids. In: Rzoska, S., Drozd-Rzoska, A., Mazur, V. (eds) Metastable Systems under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3408-3_19

Download citation

Publish with us

Policies and ethics

Navigation