Abstract

We review recent progress in the field of optomechanics, where one studies the effects of radiation on mechanical motion. The paradigmatic example is an optical cavity with a movable mirror, where the radiation pressure can induce cooling, amplification and nonlinear dynamics of the mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aguirregabiria J.M. and Bel L.: 1987, Delay-induced instability in a pendular Fabry—Perot cavity. Phys. Rev. A 36, 3768–3770

    Article  ADS  Google Scholar 

  • Arcizet O., Cohadon P.F., Briant T., Pinard M. and Heidmann A.: 2006, Radiation-pressure cooling and optomechanical instability of a micro-mirror. Nature 444, 71

    Article  ADS  Google Scholar 

  • Braginsky V. and Manukin A.: 1967, Ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 25, 653

    ADS  Google Scholar 

  • Braginsky V.B., Manukin, A.B. and Tikhonov, M.Y.: 1970, Investigation of dissipative ponderomotove effects of electromagnetic radiation. Sov. Phys. JETP 31, 829

    ADS  Google Scholar 

  • Braginsky V.B., Strigin S.E. and Vyatchanin S.P.: 2001, Parametric oscillatory instability in Fabry—Perot interferometer. Phys. Lett. A 287, 331–338

    Article  ADS  Google Scholar 

  • Brennecke F., Ritter S., Donner T. and Esslinger T.: 2008, Cavity optomechanics with a Bose— Einstein condensate. Science 322, 235–238

    Article  ADS  Google Scholar 

  • Brown K.R., Britton J., Epstein R.J., Chiaverini J., Leibfried D. and Wineland D.J.: 2007, Passive cooling of a micromechanical oscillator with a resonant electric circuit. Phys. Rev. Lett. 99, 137205

    Article  ADS  Google Scholar 

  • Carmon T., Rokhsari H., Yang L., Kippenberg T.J. and Vahala K.J.: 2005, Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902

    Article  ADS  Google Scholar 

  • Clerk A.A., Marquardt F. and Jacobs K.: 2008, Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys. 10, 095010

    Article  ADS  Google Scholar 

  • Cohadon, P.F., Heidmann A. and Pinard M.: 1999, Cooling of a mirror by radiation pressure, Phys. Rev. Lett. 83, 3174–3177

    Article  ADS  Google Scholar 

  • Corbitt T., Chen Y., Innerhofer E., Muller-Ebhardt H., Ottaway D., Rehbein H., Sigg D., Whitcomb S., Wipf C. and Mavalvala N.: 2007, An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802

    Article  ADS  Google Scholar 

  • Fabre C., Pinard M., Bourzeix S., Heidmann A., Giacobino E. and Reynaud S.: 1994, Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A 49, 1337–1343

    Article  ADS  Google Scholar 

  • Gigan S., Bohm H.R., Paternostro M., Blaser F., Langer G., Hertzberg J.B., Schwab K.C., Bauerle D., Aspelmeyer M. and Zeilinger A.: 2006, Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70

    Article  ADS  Google Scholar 

  • Gupta S., Moore K.L., Murch K.W. and Stamper-Kurn D.M.: 2007, Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 99, 213601

    Article  ADS  Google Scholar 

  • Höhberger C. and Karrai K.: 2004, Self-oscillation of micromechanical resonators. In: Nanotechnology 2004, Proceedings of the 4th IEEE conference on nanotechnology, IEEE, New York, p. 419

    Google Scholar 

  • Höhberger-Metzger C. and Karrai K.: 2004, Cavity cooling of a microlever. Nature 432, 1002

    Article  ADS  Google Scholar 

  • Jayich, A.M., Sankey J.C., Zwickl B.M., Yang C., Thompson J.D., Girvin S.M., Clerk A.A., Marquardt F. and Harris J.G.E.: 2008, Dispersive optomechanics: a membrane inside a cavity. New J. Phys. 10, 095008 (28pp)

    Article  ADS  Google Scholar 

  • Kippenberg T.J. and Vahala K.J.: 2008, Cavity optomechanics: Back-action at the mesoscale. Science 321, 5893.

    Article  Google Scholar 

  • Kippenberg T.J., Rokhsari H., Carmon T., Scherer A. and Vahala K.J.: 2005, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901

    Article  ADS  Google Scholar 

  • Kleckner D. and Bouwmeester D.: 2006, Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75

    Article  Google Scholar 

  • Ludwig M., Kubala B. and Marquardt F.: 2008, The optomechanical instability in the quantum regime. New J. Phys. 10, 095013 (19pp)

    ADS  Google Scholar 

  • Marquardt F.: 2008, Optomechanics: Push towards the quantum limit, Nat. Phys. 4, 513–514

    Article  Google Scholar 

  • Marquardt F., Harris J.G.E. and Girvin S.M.: 2006, Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901

    Article  ADS  Google Scholar 

  • Marquardt F., Chen J.P., Clerk A.A. and Girvin S.M.: 2007, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902

    Article  ADS  Google Scholar 

  • Marquardt F., Clerk A.A. and Girvin S.M.: 2008, Quantum theory of optomechanical cooling, J. Mod. Optic. 55, 3329

    Article  MATH  ADS  Google Scholar 

  • Metzger C., Ludwig M., Neuenhahn C., Ortlieb A., Favero I., Karrai K. and Marquardt F.: 2008, Self-induced oscillations in an optomechanical system driven by Bolometric backaction. Phys. Rev. Lett. 101, 133903

    Article  ADS  Google Scholar 

  • Murch K.W., Moore K.L., Gupta S. and Stamper-Kurn D.M.: 2008, Observation of quantummeasurement backaction with an ultracold atomic gas. Nat. Phys. 4, 561–564

    Article  Google Scholar 

  • Naik A., Buu O., LaHaye M.D., Armour A.D., Clerk A.A., Blencowe M.P. and Schwab K.C.: 2006, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196

    Article  ADS  Google Scholar 

  • Peil S. and Gabrielse G.: 1999, Observing the quantum limit of an electron cyclotron: QND measurements of quantum jumps between fock states. Phys. Rev. Lett. 83, 1287–1290

    Article  ADS  Google Scholar 

  • Regal C.A., Teufel J.D. and Lehnert K.W.: 2008, Measuring nanomechanical motion with a microwave cavity interferometer. Nat. Phys. 4, 555–560

    Article  Google Scholar 

  • Rodrigues D.A., Imbers J., Harvey T.J. and Armour A.D.: 2007, Dynamical instabilities of a resonator driven by a superconducting single-electron transistor. New J. Phys. 9, 84

    Article  ADS  Google Scholar 

  • Schliesser A., Del'Haye P., Nooshi N., Vahala K.J. and Kippenberg T.J.: 2006, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905

    Article  ADS  Google Scholar 

  • Schwab K.C. and Roukes M.L.: 2005, Putting mechanics into quantum mechanics. Phys. Today July, 36

    Article  Google Scholar 

  • Thompson J.D., Zwickl B.M., Jayich A.M., Marquardt F., Girvin S.M. and Harris J.G.E.: 2008, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 900–900

    Article  ADS  Google Scholar 

  • Wilson-Rae I., Nooshi N., Zwerger W. and Kippenberg T.J.: 2007, Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marquardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubala, B., Ludwig, M., Marquardt, F. (2009). Optomechanics. In: Casati, G., Matrasulov, D. (eds) Complex Phenomena in Nanoscale Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3120-4_12

Download citation

Publish with us

Policies and ethics

Navigation