Mutualistic and Dependent Relationships with Other Organisms

  • Chapter
  • First Online:
Bemisia: Bionomics and Management of a Global Pest

Abstract

Whiteflies in general – and Bemisia tabaci in particular – are involved in complex interactions with the host plant, various microorganisms and arthropods (herbivores and natural enemies). These relationships are not only important to the ecology and evolution of B. tabaci but are also essential to understanding and develo** innovative control strategies.

*(deceased)

Authorship of main chapter sections

Rosell and Blackmer: Symbiotic Relationships

Czosnek: Role of whitefly endosymbionts in virus transmission

Inbar: Whiteflies engaged with intra- and interspecific interactions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Agrawal AA, Karban R, Colfer RG. 2000. How leaf domatia and induced plant resistance affect herbivores, natural enemies and plant performance. Oikos 89:70–80.

    Article  Google Scholar 

  • Akad F, Dotan N, Czosnek H. 2004. Trap** of Tomato yellow leaf curl virus (TYLCV) and other plant viruses with a GroEL homologue from the whitefly Bemisia tabaci. Arch. Virol. 149:1481–1497.

    Article  PubMed  CAS  Google Scholar 

  • Akad F, Eybishtz A, Edelbaum D, Gorovits R, Dar-Issa O, Iraki N, Czosnek H. 2007. Making a friend from a foe: expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to Tomato yellow leaf curl virus. Arch. Virol. 152:1323–1339.

    Article  PubMed  CAS  Google Scholar 

  • Baumann P. 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59:155–189.

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Baumann L, Lai C-Y, Rouhbakhsh D, Moran NA, Clark MA. 1995. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu. Rev. Microbiol. 49:55–94.

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Moran NA, Baumann L. 1997. The evolution and genetics of aphid endosymbionts. Bioscience 47:12–20.

    Article  Google Scholar 

  • Baumann P, Munson MA, Lai C-Y, Clark MA, Baumann L, Moran NA, Campbell BC. 1993. Origin and properties of bacterial endosymbionts of aphids, whiteflies, and mealybugs. ASM News 59:21–24.

    Google Scholar 

  • Baumann L, Thao ML, Funk CJ, Falk BW, Ng JCK, Baumann P. 2004. Sequence analysis of DNA fragments from the genome of the primary endosymbiont of the whitefly Bemisia tabaci. Curr. Microbiol. 48:77–81.

    Article  PubMed  CAS  Google Scholar 

  • Baumgärtner J, Delucchi V, Von Arx R, Rubli D. 1986. Whitefly (Bemisia tabaci Genn., Stern.: Aleyrodidae) infestation patterns as influenced by cotton, weather and Heliothis: hypotheses testing by using simulation models. Agric. Ecosyst. Environ. 17:49–59.

    Article  Google Scholar 

  • Behrenz W, Technau G. 1959. Versuche zur Bekämpfung von Anobium punctatum mit Symbionticiden. Z. Angew. Entomol. 44:22–28.

    Article  Google Scholar 

  • Bernays EA, Klein BA. 2002. Quantifying the symbiont contribution to essential amino acids in aphids: the importance of tryptophan for Uroleucon ambrosiae. Physiol. Entomol. 27:275–284.

    Article  CAS  Google Scholar 

  • Blackmer JL, Byrne DN. 1999. The effect of Bemisia tabaci on amino acid balance in Cucumis melo. Entomol. Exp. Appl. 93:315–319.

    CAS  Google Scholar 

  • Blackmer JL, Lee LL, Henneberry TJ. 2002. Factors affecting egg hatch, development and survival of Bemisia argentifolii (Homoptera: Aleyrodidae) reared on an artificial feeding system. Environ. Entomol. 31:306–312.

    Article  Google Scholar 

  • Blochmann F. 1884. Über die Metamorphose der Kerne in den Ovarialeiern und über den Beginn Der Blastodermbildung bei den Ameisen. Verhandl. Naturhist. Med. Ver. Heidelberg [N.S.] 3:243–247.

    Google Scholar 

  • Blochmann F. 1888. Über das regelmässige Vorkommen von bakterienähnlichen Gebilden in den Geweben und Eiern verschiedener Insekten. Z. Biol. 24:1–15.

    Google Scholar 

  • Bourtzis K, O’Neill S. 1998. Wolbachia infections and arthropod reproduction. Bioscience 48:287–293.

    Article  Google Scholar 

  • Brehélin M. 1982. Comparative study of structure and function of blood cells from two Drosophila species. Cell Tissue Res. 221:607–615.

    Article  PubMed  Google Scholar 

  • Brooks MA. 1960. Some dietary factors that affect ovarial transmission of symbiotes. Proc. Helminthol. Soc. Wash., D.C. 27:212–220.

    Google Scholar 

  • Brooks MA. 1962. The relationship between intracellular symbiotes and host metabolism. Symp. Genet. Biol. Ital. 9:456–463.

    Google Scholar 

  • Brooks MA, Richards AG. 1955a. Intracellular symbiosis in cockroaches. I. Production of aposymbiotic cockroaches. Biol. Bull. 109:22–39.

    Article  Google Scholar 

  • Brooks MA, Richards AG. 1955b. Intracellular symbiosis in cockroaches. II. Mitotic division of mycetocytes. Science 122:242.

    Article  PubMed  CAS  Google Scholar 

  • Brown JK, Czosnek H. 2002. Whitefly transmission of plant viruses. Adv. Bot. Res. 36:65–100.

    Article  Google Scholar 

  • Brown JK, Frohlich DR, Rosell RC. 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu. Rev. Entomol. 40:511–534.

    Article  CAS  Google Scholar 

  • Buchner P. 1965. Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience, 901 pp.

    Google Scholar 

  • Buntin GD, Gilbertz DA, Oetting RD. 1993. Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera, Aleyrodidae). J. Econ. Entomol. 86:517–522.

    Google Scholar 

  • Campbell BC. 1989. On the role of microbial symbiotes in herbivorous insects. In Insect-Plant Interactions, Vol. I, ed. EA Bernays. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Campbell BC. 1993. Congruent evolution between whiteflies (Homoptera: Aleyrodidae) and their bacterial endosymbionts based on respective 18S and rDNAs. Curr. Microbiol. 26:129–132.

    Article  PubMed  CAS  Google Scholar 

  • Campbell BC, Dreyer DL. 1985. Host-plant resistance of sorghum: differential hydrolysis of pectic substances by polysaccharases of greenbug biotypes (Schizaphis graminum, Homoptera: Aphididae). Arch. Insect Biochem. Physiol. 2:203–215.

    Article  CAS  Google Scholar 

  • Campbell BC, Nes WD. 1983. A reappraisal of sterol biosynthesis and metabolism in aphids. J. Insect Physiol. 29:149–156.

    Article  CAS  Google Scholar 

  • Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M. 2007. Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull. Entomol. Res. 97:1–7.

    Article  CAS  Google Scholar 

  • Clark MA, Baumann L, Munson MA, Baumann P, Campbell BC, Duffus JE, Osborne LS, Moran NA. 1992. The eubacterial endosymbionts of whiteflies (Homoptera: Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr. Microbiol. 25:119–123.

    Article  Google Scholar 

  • Colvin J, Omongo CA, Govindappa MR, Stevenson PC, Maruthi MN. 2006. Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Adv. Virus Res. 67:419–452.

    Article  PubMed  CAS  Google Scholar 

  • Costa HS, Brown JK, Byrne DN. 1991. Life history traits of the whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) on six virus-infected or healthy plant species. Environ. Entomol. 20:1102–1107.

    Google Scholar 

  • Costa HS, Henneberry TJ, Toscano NC. 1997. Effects of antibacterial materials on Bemisia argentifolii (Homoptera: Aleyrodidae) oviposition, growth, survival, and sex ratio. J. Econ. Entomol. 90:333–339.

    CAS  Google Scholar 

  • Costa HS, Toscano NC, Henneberry TJ. 1996. Mycetocyte inclusion in the oocytes of Bemisia argentifolii (Homoptera: Aleyrodidae). Ann. Entomol. Soc. Am. 89:694–699.

    Google Scholar 

  • Costa HS, Ullman DE, Johnson MW, Tabashnik BE. 1993a. Antibiotic oxytetracycline interferes with Bemisa tabaci (Homoptera: Aleyrodidae) oviposition, development and ability to induce squash silverleaf. Ann. Entomol. Soc. Am. 86:740–748.

    CAS  Google Scholar 

  • Costa HS, Westcot DM, Ullman DE, Johnson MW. 1993b. Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum. Protoplasma 176:106–115.

    Article  Google Scholar 

  • Costa HS, Westcot DM, Ullman DE, Rosell RC, Brown JK, Johnson MW. 1995. Morphological variation in Bemisia endosymbionts. Protoplasma 189:194–202.

    Article  Google Scholar 

  • Crossley AC. 1975. The cytophysiology of insect blood. Adv. Ins. Physiol. 11:117–222.

    Article  CAS  Google Scholar 

  • Dadd RH. 1985. Nutrition: organisms. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 4, ed. GA Kerkut, LI Gilbert. Oxford: Pergamon Press.

    Google Scholar 

  • Darby AC, Birkle LM, Turner SL, Douglas AE. 2001. An aphid-borne bacterium allied to the secondary symbionts of whitefly. FEMS Microbiol. Ecol. 36:43–50.

    Article  PubMed  CAS  Google Scholar 

  • De Barro PJ. 2005. Genetic structure of the whitefly Bemisia tabaci in the Asia-Pacific region revealed using microsatellite markers. Mol. Ecol. 14:3695–3718.

    Article  PubMed  CAS  Google Scholar 

  • De Barro PJ, Bourne A, Khan SC, Brancatini V. 2006. Host plant and biotype density interactions – their role in the establishment of the invasive B biotype of Bemisia. Biol. Invasions 8:287–294.

    Article  Google Scholar 

  • De Barro PJ, Hart PJ. 2000. Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bull. Entomol. Res. 90:103–112.

    Article  PubMed  Google Scholar 

  • DeBary A. 1879. Die Erscheinung der Symbiose. Strassburg: Verlag von Karl J. Trubner.

    Google Scholar 

  • Dobson SL, Kostas B, Braig HR, Jones BF, Zhou W, Rousset F, O’Neill SL. 1999. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem. Mol. Biol. 29:153–160.

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE. 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43:17–37.

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE. 2006. Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot. 57:747–754.

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE, François CLMJ, Minto LB. 2006. Facultative ‘secondary’ bacterial symbionts and the nutrition of the pea aphid, Acyrthosiphon pisum. Physiol. Entomol. 31:262–269.

    Article  CAS  Google Scholar 

  • Dreyer DL, Campbell BC. 1987. Chemical basis of host-plant resistance to aphids. Plant Cell Environ. 10:353–361.

    CAS  Google Scholar 

  • Everett KDE, Thao M, Horn M, Dyszynski GE, Baumann P. 2005. Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int. J. Syst. Evol. Microbiol. 55:1581–1587.

    Article  PubMed  CAS  Google Scholar 

  • Fan YC, Petitt FL. 1998. Dispersal of the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae) on Bemisia argentifolii (Homoptera: Aleyrodidae). Exp. Appl. Acarol. 22:411–415.

    Google Scholar 

  • Fares MA, Moya A, Barrio E. 2005. Adaptive evolution in GroEL from distantly related endosymbiotic bacteria of insects. J. Evol. Biol. 18:651–660.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari J, Darby AC, Daniell RJ, Godfray HCJ, Douglas AE. 2004. Linking the bacterial community of pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29:60–65.

    Article  Google Scholar 

  • Filichkin SA, Brumfield S, Filichkin TP, Young MJ. 1997. In vitro interactions of the aphid endosymbiont symL chaperonin with barley yellow dwarf virus. J Virol. 71:569–577.

    PubMed  CAS  Google Scholar 

  • Fukatsu T, Nikoh N. 2000. Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Appl. Environ. Microbiol. 66:643–650.

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu T, Nikoh N, Kawai R, Koga R. 2000. The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl. Environ. Microbiol. 66:2748–2758.

    Article  PubMed  CAS  Google Scholar 

  • Gerling D. (ed.) 1990. Whiteflies: Their Bionomics, Pest Status and Management. Andover, Hants: Intercept Ltd, 348pp.

    Google Scholar 

  • Gerling D, Mayer RT. (ed.) 1996. Bemisia 1995: Taxonomy, Biology, Damage, Control and Management. Andover, Hants: Intercept Ltd, 684pp.

    Google Scholar 

  • Ghanim M, Morin S, Czosnek H. 2001a. Rate of Tomato yellow leaf curl virus (TYLCV) translocation in the circulative transmission pathway of its vector, the whitefly Bemisia tabaci. Phytopathology 91:188–196.

    Article  PubMed  CAS  Google Scholar 

  • Ghanim M, Rosell RC, Campbell LR, Czosnek H, Brown JK, Ullman DE. 2001b. Digestive, salivary and reproductive organs in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) B type. J. Morphol. 248:22–40.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E. 2006. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl. Environ. Microbiol. 72:3646–3652.

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS. 1995. Evolution of the chaperonin families (Hsp60, Hsp10 and Tep-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol. 15:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hare DJ, Elle E. 2002. Variable impact of diverse insect herbivores on dimorphic Datura wrightii. Ecology 83:2711–2720.

    Article  Google Scholar 

  • Harris KF, Pesic-Van Esbroeck Z, Duffus JE. 1996. Morphology of the sweet potato whitefly, Bemisia tabaci (Homoptera, Aleyrodidae) relative to virus transmission. Zoomorphology 116:143–156.

    Article  Google Scholar 

  • Hinde R. 1971. The control of the mycetocyte symbionts of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphum rosae. J. Insect Physiol. 17:1791–1800.

    Article  Google Scholar 

  • Höhnle M, Höfer P, Bedford ID, Briddon RW, Markham PG, Frischmuth T. 2001. Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate. Virology 290:164–171.

    Article  PubMed  CAS  Google Scholar 

  • Hooke R. 1665. Micrographia. London: The Royal Society, 384pp.

    Google Scholar 

  • Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch. Insect Biochem. Physiol. 58:216–225.

    Article  PubMed  CAS  Google Scholar 

  • Houk EJ, Griffiths GW. 1980. Intracellular symbiotes of the Homoptera. Annu. Rev. Entomol. 25:161–187.

    Article  CAS  Google Scholar 

  • Hunter MS, Perlman SJ, Kelly SE. 2003. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp, Encarsia pergandiella. Proc. R. Soc. Lond. B Biol. Sci. 270:2185–2190.

    Article  Google Scholar 

  • Inbar M, Doostdar H, Leibee GL, Mayer RT. 1999a. The role of plant rapidly induced responses in asymmetric interspecific interactions among insect herbivores. J. Chem. Ecol. 25:1961–1979.

    Article  CAS  Google Scholar 

  • Inbar M, Doostdar H, Mayer RT. 1999b. The effects of sessile whitefly nymphs (Homoptera: Aleyrodidae) on leaf chewing larvae (Lepidoptera: Noctuidae). Environ. Entomol. 28: 353–357.

    Google Scholar 

  • Inbar M, Doostdar H, Mayer RT. 2001. Suitability of stressed and vigorous plants to various insect herbivores. Oikos 94:228–235.

    Article  Google Scholar 

  • Inbar M, Gerling D. 2008. Plant-mediated interactions between whiteflies, herbivores and natural enemies. Annu. Rev. Entomol. 53:431–448.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H. 2003. Insect symbiosis: an introduction. In Insect Symbiosis, ed. TA Miller, pp. 1–21. Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Jiu M, Zhou X-P, Liu S-S. 2006. Acquisition and transmission of two begomoviruses by the B and a non-B biotype of Bemisia tabaci from Zhejiang, China. J. Phytopathol. 154:587–591.

    Article  CAS  Google Scholar 

  • Jiu M, Zhou XP, Tong L, Xu J, Yang X, Wan F-H, Liu S-S. 2007. Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE 2:e182. DOI: 10.1371/journal.pone.0000182

    Article  PubMed  Google Scholar 

  • Koch A. 1967. Insects and their endosymbionts. In Symbiosis II, ed. SM Henry, pp. 291–296. New York: Academic Press.

    Google Scholar 

  • Koga R, Tsuchida T, Fukatsu T. 2003. Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proc. R. Soc. Lond. B Biol. Sci. 270:2543–2550.

    Article  Google Scholar 

  • Lai CH, Baumann L, Baumann P. 1994. Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. PNAS 91:3819–3823.

    Article  PubMed  CAS  Google Scholar 

  • Leonardo TE, Mondor EB. 2006. Symbiont modifies host life-history traits that affect gene flow. Proc. R. Soc. Lond. B Biol. Sci. 273:1079–1084.

    Article  CAS  Google Scholar 

  • Lerat E, Daubin V, Moran NA. 2003. From gene trees to organismal phylogeny in prokaryotes: the case of γ-proteobacteria. PLoS Biol. 1:e101. DOI: 10.1371/journal.pbio.0000019.

    Article  Google Scholar 

  • Leshkowitz D, Gazit S, Reuveni E, Ghanim M, Czosnek H, McKenzie C, Shatters RL, Jr, Brown JK. 2006. Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous) cDNA libraries. BMC Genomics 7:79–94.

    Article  PubMed  CAS  Google Scholar 

  • Li ZX, Lin HZ, Guo XP. 2007. Prevalence of Wolbachia infection in Bemisia tabaci. Curr. Microbiol. 54:467–471.

    Article  PubMed  CAS  Google Scholar 

  • Liadouze I, Febvay G, Guillaud J, Bonnot G. 1995. Effect of diet on the free amino acid pools of symbiotic and aposymbiotic pea aphids, Acyrthosiphon pisum. J. Insect Physiol. 41:33–40.

    Article  CAS  Google Scholar 

  • Liu SS, De Barro PJ, Xu J, Luan J-B, Zang L-S, Ruan Y-M, Wan F-H. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772.

    Article  PubMed  CAS  Google Scholar 

  • Liu TX, Oetting RD, Buntin GD. 1994. Evidence of interspecific competition between Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on some greenhouse-grown plants. J. Entomol. Sci. 29:55–65.

    Google Scholar 

  • Mayer RT, Inbar M, McKenzie CL, Shatters R, Borowicz V, Albrecht U, Powell CA, Doostdar, H. 2002. Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Arch. Insect Biochem. Physiol. 51:151–169.

    Article  PubMed  CAS  Google Scholar 

  • Mayer RT, McCollum TG, McDonald RE, Polston JE, Doostdar H. 1996. Bemisia feeding induces pathogenesis-related proteins in tomato. In Bemisia 1995: Taxonomy, Biology, Damage, Control and Management, ed. D Gerling, RT Mayer, pp. 179–188. Andover, Hants: Intercept Ltd.

    Google Scholar 

  • McKenzie CL. 2002. Effect of tomato mottle virus (ToMoV) on Bemisia tabaci biotype B (Homoptera: Aleyrodidae) oviposition and adult survivorship on healthy tomato. Fla. Entomol. 85:367–368.

    Article  Google Scholar 

  • McKenzie CL, Shatters RG, Jr, Doostdar H, Lee SD, Inbar M, Mayer RT. 2002. Effect of Geminivirus infection and Bemisia infestation on accumulation of pathogenesis-related proteins in tomato. Arch. Insect Biochem. Physiol. 49:203–214.

    Article  PubMed  CAS  Google Scholar 

  • Mittler TE. 1971. Some effects on the aphid Myzus perisicae of ingesting antibiotics incorporated into artificial diets. J. Insect Physiol. 17:1333.

    Article  CAS  Google Scholar 

  • Montllor CB, Maxmen A, Purcell AH. 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27:189–195.

    Article  Google Scholar 

  • Moran NA. 1996. Accelerated evolution and Muller’s ratchet in endosymbiotic bacteria. PNAS 93:2873–2878.

    Article  PubMed  CAS  Google Scholar 

  • Moran NA. 2005. Symbiosis. Curr. Biol. 16(20):R866–R871.

    Article  CAS  Google Scholar 

  • Moran NA, Baumann P. 2000. Bacterial endosymbionts in animals. Curr. Opin. Microbiol. 3:270–275.

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Degnan PH. 2006. Functional genomics of Buchnera and the ecology of aphid hosts. Mol. Ecol. 15:1251–1261.

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Mira A. 2001. The process of genome shrinkage in the obligate symbiont, Buchnera aphidicola. Genome Biol. 2:20. DOI: 10.1186/gb-2001-2-12-research0054.

    Article  Google Scholar 

  • Moran NA, Plague GR, Sandstrom JP, Wilcox JL. 2003. A genomic perspective on nutrient provisioning by bacterial symbionts in insects. PNAS 100:14543–14548.

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Russell JA, Koga R, Fukatsu T. 2005a. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl. Environ. Microbiol. 71:3302–3310.

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Telang A. 1998. Bacteriocyte-associated symbionts of insects. Bioscience 48:295–304.

    Article  Google Scholar 

  • Moran NA, Tran P, Gerardo NM. 2005b. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 71:8802–8810.

    Article  PubMed  CAS  Google Scholar 

  • Morin S, Ghanim M, Sobol I, Czosnek H. 2000. The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and non-transmissible begomoviruses in the yeast two-hybrid system. Virology 276:404–416.

    Article  PubMed  CAS  Google Scholar 

  • Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel JFJM. 1999. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of Tomato yellow leaf curl virus. Virology 256:75–84.

    Article  PubMed  CAS  Google Scholar 

  • Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC. 1991. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J. Bacteriol. 173:6321–6324.

    PubMed  CAS  Google Scholar 

  • Nakabachi A, Ishikawa H. 1999. Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J. Insect Physiol. 45:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Nardon P, Grenier AM. 1991. Serial endosymbiosis theory and weevil evolution: the role of symbiosis. In Symbiosis as a Source of Evolutionary Innovation, ed. L Margulis, R Fester, pp. 153–169. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  • Nardon P, Nardon C. 1998. Morphology and cytology of symbiosis in insects. Ann. Soc. Entomol. Fr. (N. S.) 34:105–134.

    Google Scholar 

  • Nasir H, Noda H. 2003. Yeast-like symbiotes as a sterol source in anobiid beetles (Coleoptera, Anobiidae): possible metabolic pathways from fungal sterols to 7-dehydrocholesterol. Arch. Insect Biochem. Physiol. 52:175–182.

    Article  PubMed  CAS  Google Scholar 

  • Nirgianaki A, Banks GK, Frohlich DR, Veneti Z, Braig HR, Miller TA, Bedford ID, Markham PG, Savakis C, Bourtzis K. 2003. Wolbachia infections of the whitefly Bemisia tabaci. Curr. Microbiol. 47:93–101.

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Koizumi Y. 2003. Sterol biosynthesis by symbiontes: cytochrome P450 sterol C-22 desaturase genes from yeastlike symbionts of rice planthoppers and anobiid beetles. Insect Biochem. Mol. Biol. 33:649–658.

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Mittler TE. 1983. Sterols biosynthesis by symbiontes of aphids and leafhoppers. In Metabolic Aspects of Lipid Nutrition in Insects, ed. TE Mittler RH Dadd. Boulder CO: Westview Press.

    Google Scholar 

  • Ohgushi T. 2005. Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Syst. 36:81–105.

    Article  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS. 2005. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. PNAS 102:12795–12800.

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS. 2006. Costs and benefits of a superinfection of facultative symbionts in aphids. Proc. R. Soc. Lond. B Biol. Sci. 273:1273–1280.

    Article  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS. 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. PNAS 100:1803–1807.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill SL, Gooding RH, Aksoy S. 1993. Phylolgenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med. Vet. Entomol. 7:377–383.

    Article  PubMed  Google Scholar 

  • O’Neill SL, Hoffmann AA, Werren JH. 1997. Influential Passengers. Inherited Microorganisms and Arthropod Reproduction. New York: Oxford University Press, 230pp.

    Google Scholar 

  • Pascual S. 2006. Short communication. Mechanisms in competition, under laboratory conditions, between Spanish biotypes B and Q of Bemisia tabaci (Gennadius). Span. J. Agric. Res. 4:351–354.

    Google Scholar 

  • Pascual S, Callejas C. 2004. Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bull. Entomol. Res. 94:369–375.

    Article  PubMed  CAS  Google Scholar 

  • Patil BV. 1996. Competitive displacement of Bemisia with leafhoppers and aphids in a cotton ecosystem. In Bemisia 1995: Taxonomy, Biology, Damage, Control and Management, ed. D Gerling, RT Mayer, pp. 243–245. Andover, Hants: Intercept Ltd.

    Google Scholar 

  • Perring TM. 1996. Biological differences of two species of Bemisia that contribute to adaptive advantage. In Bemisia 1995: Taxonomy, Biology, Damage, Control and Management, ed. D Gerling, RT Mayer, pp. 3–16. Andover, Hants: Intercept Ltd.

    Google Scholar 

  • Rao NV, Reddy AS. 1994. Incidence of whitefly, Bemisia tabaci Genn., in relation to other sucking pests on cotton. Indian J. Entomol. 56:104–106.

    Google Scholar 

  • Rojas MR, Hagen C, Lucas WJ, Gilbertson RL. 2005. Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43:361–394.

    Article  PubMed  CAS  Google Scholar 

  • Rosell RC, Torres-Jerez I, Brown JK. 1999. Tracing the geminivirus-whitefly transmission pathway by polymerase chain reaction in whitefly extracts, saliva, hemolymph, and honeydew. Phytopathology 89:239–246.

    Article  PubMed  CAS  Google Scholar 

  • Ruan YM, Liu SS. 2005. Detection and phylogenetic analysis of prokaryotic endosymbionts in Bemisia tabaci. Acta Entomol. Sin. 48:859–865.

    CAS  Google Scholar 

  • Ruan YM, Xu J, Liu SS. 2006. Effects of antibiotics on fitness of the B biotype and a non-B biotype of the whitefly Bemisia tabaci. Entomol. Exp. Appl. 121:159–166.

    Article  Google Scholar 

  • Russell JA, Moran NA. 2005. Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl. Environ. Microbiol. 71:7987–7994.

    Article  PubMed  CAS  Google Scholar 

  • Russell JA, Torre LA, Sabater-Muñoz B, Moya A, Moran NA. 2003. Side-step** secondary symbionts: widespread horizontal transfer across and beyond the Aphididoidea. Mol. Ecol. 12:1061–1075.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai M, Koga R, Tsuchida R, Meng X-Y, Fukatsu T. 2005. Rickettsia symbiont in the pea aphid Acyrthosiphum pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl. Environ. Microbiol. 71:4069–4075.

    Article  PubMed  CAS  Google Scholar 

  • Sandstrom JP, Russell JA, White JP, Moran NA. 2001. Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol. Ecol. 10:217–228.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Ishikawa H. 1995. Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 41:41–46.

    Article  CAS  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ. 2005. Aphid protected from pathogen by endosymbiont. Science 310:1781.

    Article  PubMed  CAS  Google Scholar 

  • Silva FJ, Latorre A, Moya A. 2001. Genome size reduction through multiple events of gene disintegration in Buchnera APS. Trends Genet. 17:615–618.

    Article  PubMed  CAS  Google Scholar 

  • Sinha RC, Peterson EA. 1972. Uptake and persistence of oxytetracycline in aster plants and vector leafhoppers in relation to inhibition of clover phyllody agent. Phytopathology 62:377–383.

    Article  Google Scholar 

  • Sinkins SP, Curtis CF, O’Neill SL. 1997. The potential application of inherited symbiont systems to pest control. In Influential Passengers. Inherited Microorganisms and Arthropod Reproduction, ed. SL O’Neill, AA Hoffmann, JH Werren, pp. 155–175. New York: Oxford University Press.

    Google Scholar 

  • Soroker V, Nelson DR, Bahar O, Reneh S, Yablonski S, Palevsky E. 2003. Whitefly wax as a cue for phoresy in the broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae). Chemoecology 13:163–168.

    Article  CAS  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Hurst GDD. 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53:71–102.

    Article  PubMed  CAS  Google Scholar 

  • Šulc K. 1909. O biologii kvasnic a jejich symbiose s hmysem. (Über die Biologie der Hefepilze und ihre Symbiose mit Insekten, Vortrag). Vers. Naturw. Ges. Mahrisch-Ostrau 5, November. (Sbornik Prirodovedecke Spolecnosti Mor. Ostrave Vol. 2, 1923).

    Google Scholar 

  • Szklarzewicz T, Moskal A. 2001. Ultrastructure, distribution, and transmission of endosymbionts in the whitefly Aleurochiton aceris Modeer (Insecta, Hemiptera, Aleyrodinea). Protoplasma 218:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Takiya DM, McKamey SH, Cavichioli RR. 2006. Validity of Homalodisca and of H. vitripennis as the name for glassy-winged sharpshooter (Hemiptera: Cicadellidae: Cicadellinae). Ann. Entomol. Soc. Am. 99:648–655.

    Article  Google Scholar 

  • Thao ML, Baumann P. 2004a. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl. Environ. Microbiol. 70:3401–3406.

    Article  PubMed  CAS  Google Scholar 

  • Thao ML, Baumann P. 2004b. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr. Microbiol. 48:140–144.

    Article  PubMed  CAS  Google Scholar 

  • Thao ML, Baumann L, Hess JM, Falk BW, Ng JC, Gullan K, Baumann PJ. 2003. Phylogenetic evidence for two new insect-associated chlamydia of the family Simkaniaceae. Curr. Microbiol. 47:46–50.

    Article  PubMed  CAS  Google Scholar 

  • Truernit E, Sauer N. 1995. The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of ß-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta 196:564–570.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida T, Koga R, Fukatsu R. 2004. Host plant specialization governed by facultative symbiont. Science 303:1989.

    Article  PubMed  CAS  Google Scholar 

  • Tsueda H, Tsuchida K. 1998. Differences in spatial distribution and life history parameters of two sympatric whiteflies, the greenhouse whitefly (Trialeurodes vaporariorum Westwood) and the silverleaf whitefly (Bemisia argentifolii Bellows and Perring), under greenhouse and laboratory conditions. Appl. Entomol. Zool. 33:379–383.

    Google Scholar 

  • van den Heuvel J, Verbeek M, van der Wilk F. 1994. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J. Gen. Virol. 75:2559–2565.

    Article  PubMed  Google Scholar 

  • van Ham RCHJ, Moya A, Latorre A. 2004. The evolution of symbiosis in insects. In Evolution: From Molecules to Ecosystems, ed. A Moya, E Font, pp. 94–105. Oxford: Oxford University Press.

    Google Scholar 

  • van de Ven WTG, LeVesque CS, Perring TM, Walling LL. 2000. Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409–1423.

    PubMed  Google Scholar 

  • von Dohlen CD, Moran NA. 1995. Molecular phylogeny of the Homoptera: a paraphlyetic taxon. J. Mol. Evol. 41:211–223.

    Article  Google Scholar 

  • Walters FS, Mullin CA, Gildow FE. 1994. Biosynthesis of sorbic acid in aphids: an investigation into symbiont involvement and potential relationship with aphid pigments. Arch. Insect Biochem. Physiol. 26:49–67.

    Article  CAS  Google Scholar 

  • Weeks AR, Velten R, Stouthamer R. 2003. Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc. R. Soc. Lond. B Biol. Sci. 270:1857–1865.

    Article  Google Scholar 

  • Wernegreen JL, Degnan PH, Lazarus AB, Palacios C, Bordenstein SR. 2003. Genome evolution in an insect cell: distinct features of an ant-bacterial partnership. Biol. Bull. 204:221–231.

    Article  PubMed  CAS  Google Scholar 

  • Wernegreen JJ, Ochman H, Jones IB, Moran NA. 2000. Decoupling of genome size and sequence divergence in a symbiotic bacterium. J. Bacteriol. 182:3867–3869.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson TL, Koga R, Fukatsu T. 2007. Role of host nutrition in symbiont regulation: impact of dietary nitrogen on proliferation of obligate and facultative bacterial endosymbionts of the pea aphid Acyrthosiphon pisum. Appl. Environ. Microbiol. 73:1362–1366.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson TL, Kukatsu T, Ishikawa H. 2003. Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid, Acyrhosiphon pisum (Hemiptera: Aphididae). Arth. Struct. Dev. 32:241–245.

    Article  CAS  Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA. 2006. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 4(6):e188. DOI: 10.1371/journal.pbio.0040188

    Article  PubMed  CAS  Google Scholar 

  • Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K. 2004. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. PNAS 101:15042–15045.

    Article  PubMed  CAS  Google Scholar 

  • Zang L, Chen WQ, Liu SS. 2006. Comparison of performance on different host plants between the B biotype and a non-B biotype of Bemisia tabaci from Zhejiang, China. Entomol. Exp. Appl. 121:221–227.

    Article  Google Scholar 

  • Zang L, Liu SS. 2007. A comparative study on mating behaviour between the B biotype and a non-B biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) from Zhejiang, China. J. Insect Behav. 20:157–171.

    Article  Google Scholar 

  • Zchori-Fein EY, Brown JK. 2002. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann. Entomol. Soc. Am. 95:711–718.

    Article  Google Scholar 

  • Zchori-Fein EY, Gottlieb S, Kelly E, Brown JK, Wilson JM, Karr TL, Hunter MS. 2001. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. PNAS 98:12555–12560.

    Article  PubMed  CAS  Google Scholar 

  • Zchori-Fein EY, Perlman SJ, Kelly SE, Katzir N, Hunter MS. 2004. Characterization of “Bacteriodetes” symbionts in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of “Candidatus Cardinium hertigii”. Int. J. Syst. Evol. Microbiol. 54:961–968.

    Article  PubMed  CAS  Google Scholar 

  • Zhang LP, Zhang GY, Zhang YJ, Zhang WJ, Liu Z. 2005. Interspecific interactions between Bemisia tabaci (Hem., Aleyrodidae) and Liriomyza sativae (Dipt., Agromyzidae). J. Appl. Entomol. 129:443–446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemarie C. Rosell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rosell, R.C., Blackmer*, J.L., Czosnek, H., Inbar, M. (2009). Mutualistic and Dependent Relationships with Other Organisms. In: Stansly, P., Naranjo, S. (eds) Bemisia: Bionomics and Management of a Global Pest. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2460-2_5

Download citation

Publish with us

Policies and ethics

Navigation