Physiology and Pathophysiology of Coronary Circulation

  • Chapter
Clinical Applications of Cardiac CT

Abstract

The heart supplies blood to itself through two coronary arteries that support the coronary circulation. Both arteries lie outside of the heart muscle running along the atrioventricular groove and branch off into a system of smaller vessels that supply the muscle cells. Because of the high oxygen requirements of the myocardium, capillary density is very high, (accounting for ∼15 percent of the total cardiac mass). After giving off its oxygen and nutrients in the capillaries, the venous blood flows through coronary veins draining directly into the right atrium. Other drainage is by means of thebesian veins, which drain directly into the right heart, and anterior cardiac veins that empty into the right atrium. Small intramural collateral vessels represent functionally important elements that connect the coronaries and can enlarge after coronary obstruction, providing near-normal flow at rest to the distal segment of the diseased artery. When the heart needs to work harder than during basal conditions, the coronary arteries dilate, thus varying the resistance to the blood flow and increasing the oxygen supply to the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saltin B, Astrand PO (1967) Maximal oxygen uptake in athletes. J Appl Physiol 23:353–358

    PubMed  CAS  Google Scholar 

  2. Klocke FJ (1976) Coronary blood flow in man. Prog Cardiovasc Dis 19:117

    Article  PubMed  CAS  Google Scholar 

  3. Canty Jr JM (1988) Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 63:821–836

    PubMed  Google Scholar 

  4. Shaw RF, Mosher P, Ross J Jr et al (1962) Physiologic principles of coronary perfusion. J Thorac Cardiovasc Surg 44:608–616

    PubMed  CAS  Google Scholar 

  5. Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205

    PubMed  CAS  Google Scholar 

  6. Kuo L, Davis MJ, Chilian WM (1995) Longitudinal gradients for endothelium-dependent and-independent vascular responses in the coronary microcirculation. Circulation 92:518–525

    PubMed  CAS  Google Scholar 

  7. Miller FJ, Dellsperger KC, Gutterman DD (1997) Myogenic constriction of human coronaryarterioles. Am J Physiol Heart Circ Physiol 273:H257–264

    CAS  Google Scholar 

  8. Kuo L, Davis MJ, Chilian WM (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 259:H1063–1070

    PubMed  CAS  Google Scholar 

  9. Liu Y, Gutterman DD (2009) Vascular control in humans: Focus on the coronary microcirculation. Basic Res Cardiol 104:211–227

    Article  PubMed  Google Scholar 

  10. Miura H, Wachtel RE, Liu Y et al (2001) Flow-induced dilation of human coronary arterioles: Important role of Ca2+-activated K+ channels. Circulation 103:1992–1998

    PubMed  CAS  Google Scholar 

  11. Dube S, Canty Jr JM (2001) Shear-stress induced vasodilation in porcine coronary conduit arteries is independent of nitric oxide release. Am J Physiol 280:H2581–2590

    CAS  Google Scholar 

  12. Niebauer J, Cooke JP (1996) Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 28:1652–1660

    Article  PubMed  CAS  Google Scholar 

  13. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  PubMed  CAS  Google Scholar 

  14. Duncker DJ, Bache RJ (2000) Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther 86:87–110

    Article  PubMed  CAS  Google Scholar 

  15. Daggett WM, Nugent GC, Carr PW et al (1967) Influence of vagal stimulation on ventricular contractility, O2 consumption, and coronary flow. Am J Physiol 212:8–18

    PubMed  CAS  Google Scholar 

  16. Heusch G, Baumgart D, Camici P et al (2000) a-Adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101:689–694

    PubMed  CAS  Google Scholar 

  17. Eckstein RW, Stroud M 3rd, Eckel R et al (1950) Effects of control of cardiac work upon coronary flow and O2 consumption after sympathetic nerve stimulation. Am J Physiol 163:539–544

    PubMed  CAS  Google Scholar 

  18. Mudge GH Jr, Grossman W, Mills RM Jr et al (1976) Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med 295:1333–1337

    Article  PubMed  Google Scholar 

  19. Vatner SF, Hintze TH, Macho P (1982) Regulation of large coronary arteries by beta-adrenergic mechanisms in the conscious dog. Circ Res 51:56–66

    PubMed  CAS  Google Scholar 

  20. Ross G, Jorgensen CR (1970) Effects of a cardio-selective beta-adrenergic blocking agent on the heart and coronary circulation. Cardiovasc Res 4:148–153

    Article  PubMed  CAS  Google Scholar 

  21. Roberts WC, Dicicco BS, Waller BF et al (1982) Origin of the left main from the right coronary artery or from the right aortic sinus with intramyocardial tunneling to the left side of the heart via the ventricular septum: the case against clinical significance of myocardial bridge or coronary tunnel. Am Heart J 104:303–305

    Article  PubMed  CAS  Google Scholar 

  22. McGinn AL, White CW, Wilson RF (1990) Interstudy variability of coronary flow reserve: Influence of heart rate, arterial pressure, and ventricular preload. Circulation 81:1319–1330

    Article  PubMed  CAS  Google Scholar 

  23. Marcus ML, Mueller TM, Gascho JA, Kerber RE (1979) Effects of cardiac hypertrophy secondary to hypertension on the coronary circulation. Am J Cardiol 44:1023–1031

    Article  PubMed  CAS  Google Scholar 

  24. Marcus ML, Doty DB, Hiratzka LF et al (1982) Decreased coronary flow reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N Engl J Med 307:1362–1367

    Article  PubMed  CAS  Google Scholar 

  25. Wieneke H, Haude M, Ge J et al (2000) Corrected coronary flow velocity reserve: a new concept for assessing coronary perfusion. J Am Coll Cardiol 35:1713–1720

    Article  PubMed  CAS  Google Scholar 

  26. Akasaka T, Yoshida K, Hozumi T et al (1997) Retinopathy identifies marked restriction of coronary flow reserve in patients with diabetes mellitus. J Am Coll Cardiol 30:935–941

    Article  PubMed  CAS  Google Scholar 

  27. Baumgart D, Haude M, Liu F et al (1998) Current concepts of coronary flow reserve for clinical decision making during cardiac catheterization. Am Heart J 136:136–149

    Article  PubMed  CAS  Google Scholar 

  28. Gould KL, Lipscomb K (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34:48–55

    Article  PubMed  CAS  Google Scholar 

  29. White F, Carroll S, Magnet A et al (1992) Coronary collateral development in swine after coronary artery occlusion. Circ Res 71:1490–1500

    PubMed  CAS  Google Scholar 

  30. Miwa K, Fujita M, Kameyama T et al (1999) Absence of myocardial ischemia during sudden controlled occlusion of coronary arteries in patients with well-developed collateral vessels. Coron Artery Dis 10:459–463

    Article  PubMed  CAS  Google Scholar 

  31. Pijls NH, De Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708

    Article  PubMed  CAS  Google Scholar 

  32. De Bruyne B, Bartunek J, Sys SU et al (1996) Simultaneous coronary pressure and flow velocity measurements in humans: feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 94:1842–1849

    PubMed  Google Scholar 

  33. Pijls NH, Van Gelder B, Van der Voort P et al (1995) Fractional flow reserve: a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92:3183–3193

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Guaricci, A.I., Di Biase, L., Casolo, G. (2012). Physiology and Pathophysiology of Coronary Circulation. In: Cademartiri, F., Casolo, G., Midiri, M. (eds) Clinical Applications of Cardiac CT. Springer, Milano. https://doi.org/10.1007/978-88-470-2522-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2522-6_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2521-9

  • Online ISBN: 978-88-470-2522-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation