Thoracic impedance tracing in perioperative hemodynamic monitoring: a technique to be revisited

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.
  • 184 Accesses

Abstract

Thoracic electrical bioimpedance (TEB) is a non-invasive method used to evaluate beat-by-beat stroke volume (SV) and, when the heart rate (HR) is known, cardiac output (CO). Given the fact that in the electrical impedance signal it is easy to identify the start and end of systole, when an electrocardiographic signal is available this method can also be used for the beat-to-beat measurement of the left ventricular pre-ejection period (PEP), the left ventricular ejection time (LVET), and the PEP/LVET ratio (Weissler quotient), which is widely considered an excellent index for monitoring left ventricular contractility (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kubiceck WG (1996) Development and evaluation of an impedance cardiac output system. Aerospace Med 12: 1208–1212

    Google Scholar 

  2. Sramek B (1982) Cardiac output by electrical impedance. Med Electronics 4: 93–97

    Google Scholar 

  3. Bernstein DP (1986) A new stroke volume equation for thoracic electrical impedance: theory and rationale. Crit Care Med 14: 904–909

    Article  PubMed  CAS  Google Scholar 

  4. Shoemaker WC, Howard Belzbere et al (1998) Multicenter study of non-invasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest 114: 1643–1652

    Article  PubMed  CAS  Google Scholar 

  5. Young JD, Mc Quillón P et al (1993) Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Brit J Anaesth 70: 58–62

    Article  PubMed  CAS  Google Scholar 

  6. Jensen L, Yakimets J, Teo KK (1995) A review of impedance cardiography. Heart Lung 24: 183–193

    Article  PubMed  CAS  Google Scholar 

  7. Spiering W, Van Es PN, De Leeuw PW (1998) Comparison of impedance cardiography and dye dilution method for measuring cardiac output. Heart 79: 437–441

    PubMed  CAS  Google Scholar 

  8. Stetz CW, Miller RG et al. (1982) Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis 126: 1001–1004

    PubMed  CAS  Google Scholar 

  9. Cropp GJA, Burton AC (1965) Theoretical considerations and model experiments on the validity of indicator dilution methods for measurements of variable flow. Circ Res 18: 26–48

    Article  Google Scholar 

  10. Scheuer-Leeser M, Morguet A et al (1997) Some aspects to the pulsation error in blood-flow calculations by indicator-dilution techniques. Med Biol Eng Comput 15: 118–123

    Article  Google Scholar 

  11. Mackenzie JD, Haites NE et al (1986) Method of assessing the reproducibility of blood flow measurements…factors influencing the performance of thermodilution cardiac out-put. Br Heart J 55: 14–24

    Article  PubMed  CAS  Google Scholar 

  12. Petros S, Engelmann L (2001) Validity of an abbreviated indirect calorimetry protocol for measurement of resting expenditures in mechanically ventilated and spontaneously breathing critically ill patients. Crit Care Med 27: 1164–1168

    CAS  Google Scholar 

  13. Bland JM, Altman GD (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet I: 307–310

    Article  Google Scholar 

  14. Bland JM, Altman GD (1995) Comparing methods of measurement: why plotting difference against standard method in misleading. Lancet 346: 1085–1987

    Article  PubMed  CAS  Google Scholar 

  15. Van der Meer BJM, De Vries JPPM, Schreuder WO et al (1997) Impedance cardiography in cardiac surgery patients: abnormal body weight gives unreliable cardiac output measurements. Acta Anaesthesiol Scand 41: 708–712

    Article  PubMed  Google Scholar 

  16. Young GS, Mc Quillón P (1993) Comparison of thoracic electrical bioimpedance and thermo- dilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 70: 58–62

    Article  PubMed  CAS  Google Scholar 

  17. Shoemaker WC, Wo CC, Yu S et al (2000) Invasive and non invasive hemodynamic monitoring of acutely ill sepsis and septic shock patients in the emergency department. Eur J Emerg Med 7: 169–75

    Article  PubMed  CAS  Google Scholar 

  18. Tani H, Singer W, McPhee BR et al (2000) Splanchnic mesenteric capacitance in the posmral tachycardia syndrome (POTS). Anat Neurosci 86: 107–113

    CAS  Google Scholar 

  19. Rosenberg P, Yoncy CW (2000) Non invasive assessment of hemodynamics: an emphasis on bioimpedance cardiography. Curr Opin Cardiol 15: 151–155

    Article  PubMed  CAS  Google Scholar 

  20. Spiess BD, Patel MA, Soltow LO, Wright IH (2001) Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second generation bioimpedance device. J Cardiothorac Vase Anaesth 15: 567–573

    Article  CAS  Google Scholar 

  21. Sargerman WS, Riffenpurgh RH, Spiess BD (2002) Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vase Anaesth 16: 8–14

    Article  Google Scholar 

  22. Garrard CL, Weissler AM, Dodge HT (1970) The relationship of alterations in systolic time intervals to ejection fraction in patients with cardiac disease. Circulation 11: 455

    Article  Google Scholar 

  23. Marik PE, Pendelton JE, Smith R (1997) A comparison of hemodynamic parameters derived from transthoracic electrical bioimpedance with those parameters obtained by hemodilution and ventricular angiography. Crit Care Med 25: 1545–1550

    Article  PubMed  CAS  Google Scholar 

  24. Bonjer FM, Van Der Berg JW, Dirken NJ (1952) The origin of the variations of body impedance occurring during the cardiac cycle. Circulation 12: 415–420

    Article  Google Scholar 

  25. Balestra B, Malacrida R, Leonardi L et al (1992) Esophageal electrodes allow precise assessment of cardiac output by bioimpedance. Crit Care Med 20: 62–67

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Italia

About this paper

Cite this paper

Favaro, M., Allaria, B., Resta, M. (2003). Thoracic impedance tracing in perioperative hemodynamic monitoring: a technique to be revisited. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2215-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2215-7_12

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0194-7

  • Online ISBN: 978-88-470-2215-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation