Analysis of Lichen Metabolites, a Variety of Approaches

  • Chapter
  • First Online:
Recent Advances in Lichenology

Abstract

Lichens produce secondary metabolites which have been first considered as a chemical support fully involved in lichen taxonomy. As a consequence, analytical methods were developed and applied to these organisms from a long time, some of them being standardized. Then, lichen analysis benefitted from new developments and techniques applied for isolation and identification of secondary metabolites which are exposed and discussed herein. Some ancient techniques for lichen taxonomy are still used as spot tests , which involve application of specific reagents directly on the lichen thallus. TLC is also still extensively used with standardized protocols affording more accurate information on lichens’ metabolic profiles. Identification of lichen compounds from the shape of crystals observed under microscope was facilitated as some major lichen metabolites are extracted in high yields. X-rays are now used in some cases where classical spectroscopic, UV, IR, MS, and NMR techniques do not allow unambiguous assignments. Using such techniques for isolated lichen compounds, some characteristic identification patterns of these substances are presented here. Hyphenated techniques, coupling separation and identification, are more and more used and broaden the analysis facilities of lichen compounds. They enable early dereplication and subsequent focusing on bioactive or original compounds. Other trends in lichenology involve in situ analyses thanks to specific and innovative NMR or MS techniques that yield valuable information directly from the natural complex matrix. Several advantages can be expected from those approaches: no extraction steps, qualitative and quantitative information in a few minutes or hours, and direct analysis of genuine compounds, avoiding chemical artefacts associated with extraction and purification processes (Table 11.2). Moreover, some of these methods pave the way for the development of imaging techniques that might help correlating metabolites to their specific ecological environment. Altogether, such enhancements might enable harnessing of lichens’ unique chemo-diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aberhart DJ, Overton KH, Huneck S (1970) Portentol: an unusual polypropionate from the lichen Roccella portentosa. J Chem Soc C 11:1612–1623

    Google Scholar 

  • Adachi S (1965) Thin-layer chromatography of carbohydrates in the presence of bisulfite. J Chromatogr A 17:295–299

    CAS  Google Scholar 

  • Addison JB (1985) Application of pyrolysis-chemical ionisation mass spectrometry to lichenology. Analyst 110:933–935

    CAS  Google Scholar 

  • Alcantara GB, Honda NK, Ferreira MMC, Ferreira AG (2007) Chemometric analysis applied in 1H HR-MAS NMR and FT-IR data for chemotaxonomic distinction of intact lichen samples. Anal Chim Acta 595:3–8

    CAS  Google Scholar 

  • Arup U, Ekman S, Lindblom L, Mattsson J-E (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25:61–71

    Google Scholar 

  • Asplund J, Gauslaa Y (2008) Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 155:93–99

    PubMed  Google Scholar 

  • Asplund J, Solhaug KA, Gauslaa Y (2010) Optimal defense: snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation. Ecology 91:3100–3105

    PubMed  Google Scholar 

  • Aubert S, Juge C, Boisson A-M, Gout E, Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (link) in high mountain environments. Planta 226:1287–1297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bendz G, Bohman G, Santesson J (1967) Studies en the chemistry of lichens. 5. Separation and identification of the antipodes of usnic acid by thin layer chromatography. Acta Chem Scand 21:1376–1377

    CAS  Google Scholar 

  • Berova N, Di Bari L, Pescitelli G (2007) Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem Soc Rev 36:914–931

    CAS  PubMed  Google Scholar 

  • Bhattarai HD, Paudel B, Hong SG, Lee HK, Yim JH (2008) Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. J Nat Med 62:481–484

    PubMed  Google Scholar 

  • Bialonska D, Dayan FE (2005) Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J Chem Ecol 31:2975–2991

    CAS  PubMed  Google Scholar 

  • Blasco M, Domeño C, Nerín C (2008) Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains. Anal Bioanal Chem 391:759–771

    CAS  PubMed  Google Scholar 

  • Bodo B, Molho D (1980) Structure des acides isomuronique et neuropogolique, nouveaux acides aliphatiques du lichen Neuropogon trachycarpus. Phytochemistry 19:1117–1120

    CAS  Google Scholar 

  • Boustie J, Grube M (2005) Lichens—a promising source of bioactive secondary metabolites. Plant Genet Resour Charact Util 3:273–287

    CAS  Google Scholar 

  • Boustie J, Tomasi S, Grube M (2011) Bioactive lichen metabolites: alpine habitats as an untapped source. Phytochem Rev 10:287–307

    CAS  Google Scholar 

  • Brante G (1949) Iodine as a means of development in paper chromatography. Nature 163, 651–651

    Google Scholar 

  • Brittain HG (1998) Applications of chiroptical spectroscopy for the characterization of pharmaceutical compounds. J Pharm Biomed Anal 17:933–940

    CAS  PubMed  Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven

    Google Scholar 

  • Bychuk IA (1993) Change in the lipid composition of lichens in the spring period. Chem Nat Compd 29:582–585

    Google Scholar 

  • Cetin H, Tufan-Cetin O, Turk AO, Tay T, Candan M, Yanikoglu A, Sumbul H (2008) Insecticidal activity of major lichen compounds,(−)- and (+)-usnic acid, against the larvae of house mosquito, Culex pipiens L. Parasitol Res 102:1277–1279

    PubMed  Google Scholar 

  • Cheng S-C, Huang M-Z, Shiea J (2011) Thin layer chromatography/mass spectrometry. J Chromatogr A 1218:2700–2711

    CAS  PubMed  Google Scholar 

  • Cheng B, Cao S, Vasquez V, Annamalai T, Tamayo-Castillo G, Clardy J, Tse-Dinh Y-C (2013) Identification of anziaic acid, a lichen depside from Hypotrachyna sp., as a new topoisomerase poison inhibitor. PLoS ONE 8:e60770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chollet-Krugler M, Le-Floch M, Articus K, Millot M, Boustie J (2008) Carbon-13 CP-MAS NMR studies of some lichens of the Genus Cladonia section Cladina. In: Planta Medica. Georg Thieme Verlag Stuttgart, Germany, p 1118

    Google Scholar 

  • Choma IM, Grzelak EM (2011) Bioautography detection in thin-layer chromatography. J Chromatogr A 1218:2684–2691

    CAS  PubMed  Google Scholar 

  • Cody RB, Laramée JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302

    CAS  PubMed  Google Scholar 

  • Corcoran O, Spraul M (2003) LC–NMR–MS in drug discovery. Drug Discov Today 8:624–631

    CAS  PubMed  Google Scholar 

  • Corradi da Silva ML, Iacomini M, Jablonski E, Gorin PA (1993) Carbohydrate, glycopeptide and protein components of the lichen Sticta sp. and effect of storage. Phytochemistry 33:547–552

    Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    CAS  PubMed  Google Scholar 

  • Culberson CF (1972) Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. J Chromatogr A 72:113–125

    CAS  Google Scholar 

  • Culberson CF, Culberson WL (1978) β-Orcinol derivatives in lichens: biogenetic evidence from Oropogon Ioxensis. Exp Mycol 2:245–257

    CAS  Google Scholar 

  • Culberson CF, Elix JA (1989) Lichen substances. Methods Plant Biochem 1:509–535

    CAS  Google Scholar 

  • Culberson CF, Johnson A (1976) A standardized two-dimensional thin-layer chromatographic method for lichen products. J Chromatogr A 128:253–259

    CAS  Google Scholar 

  • Culberson CF, Johnson A (1982) Substitution of methyltertbutyl ether for diethyl ether in the standardized thin-layer chromatographic method for lichen products. J Chromatogr A 238:483–487

    CAS  Google Scholar 

  • Culberson CF, Kristinsson H-D (1970) A standardized method for the identification of lichen products. J Chromatogr A 46:85–93

    CAS  Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1977) Nonrandom distribution of an epiphytic Lepraria on two species of Parmelia. Bryologist 80:201–203

    Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1981) A standardized TLC analysis of β-orcinol depsidones. Bryologist 84:16–29

    Google Scholar 

  • Czeczuga B, Cifuentes B, Reynaud PA (1988) Carotenoids in lichens from the Canary Islands. Biochem Syst Ecol 16:117–118

    CAS  Google Scholar 

  • Czygan F-C (1976) Carotinoid-Garnitur and-Stoffwechsel der Flechte Haematomma ventosum (L.) Massal. s. str. and ihres Phycobionten. Z Fuer Pflanzenphysiol 79:438–445

    CAS  Google Scholar 

  • Dahlman L, Persson J, Näsholm T, Palmqvist K (2003) Carbon and nitrogen distribution in the green algal lichens Hypogymnia physodes and Platismatia glauca in relation to nutrient supply. Planta 217:41–48

    CAS  PubMed  Google Scholar 

  • Dailey RN, Montgomery DL, Ingram JT, Siemion R, Raisbeck MF (2008) Experimental reproduction of tumbleweed shield lichen (Xanthoparmelia chlorochroa) poisoning in a domestic sheep model. J Vet Diagn Invest 20:760–765

    PubMed  Google Scholar 

  • David F, Elix JA, Binsamsudin MW (1990) Two new aliphatic acids from the lichen Parmotrema praesorediosum. Aust J Chem 43:1297–1300

    CAS  Google Scholar 

  • Dayan F, Romagni J (2001) Lichens as a potential source of pesticides. Pestic Outlook 12:229–232

    CAS  Google Scholar 

  • De Oliveira LFC, Pinto PCC, Marcelli MP, Dos Santos HF, Edwards HGM (2009) The analytical characterization of a depside in a living species: spectroscopic and theoretical analysis of lecanoric acid extracted from Parmotrema tinctorum Del Ex Nyl. lichen. J Mol Struct 920:128–133

    Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA, Shustov MV (1991) Identification of fatty acids from Cladonia lichens. Phytochemistry 30:4015–4018

    Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA (1992a) Lipid composition of some lichens. Phytochemistry 31:1617–1620

    Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA (1992b) Fatty acids and phospholipids from lichens of the order lecanorales. Phytochemistry 31:851–853

    Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA, Shustov MV (1992c) Fatty acid composition of Parmelia lichens. Phytochemistry 31:841–843

    Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA (1994) Seasonal variability of lipids and fatty acids in the tree-growing lichen Xanthoria parientina L. J Exp Bot 45:403–408

    CAS  Google Scholar 

  • Deschamps JR (2010) X-ray crystallography of chemical compounds. Life Sci 86:585–589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dmitrenok PS, El’kin YN, Stepanenko LS, Krivoshchekova OE (1987) Fast-atom ionization mass spectra of some lichen metabolites. Chem Nat Compd 23:249–250

    Google Scholar 

  • Edwards HGM, Farwell DW, Seaward MRD (1991) Raman spectra of oxalates in lichen encrustations on Renaissance frescoes. Spectrochim Acta Part Mol Spectrosc 47:1531–1539

    Google Scholar 

  • Edwards HGM, Holder JM, Wynn-Williams DD (1998) Comparative FT-Raman spectroscopy of Xanthoria lichen-substratum systems from temperate and antarctic habitats. Soil Biol Biochem 30:1947–1953

    CAS  Google Scholar 

  • Edwards HG, Newton EM, Wynn-Williams DD (2003a) Molecular structural studies of lichen substances II: atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid. J Mol Struct 651:27–37

    Google Scholar 

  • Edwards HG, Newton EM, Wynn-Williams DD, Coombes SR (2003b) Molecular spectroscopic studies of lichen substances 1: parietin and emodin. J Mol Struct 648:49–59

    CAS  Google Scholar 

  • Eisenreich W, Bacher A (2007) Advances of high-resolution NMR techniques in the structural and metabolic analysis of plant biochemistry. Phytochemistry 68:2799–2815

    CAS  PubMed  Google Scholar 

  • Eisenreich W, Knispel N, Beck A (2011) Advanced methods for the study of the chemistry and the metabolism of lichens. Phytochem Rev 10:445–456

    CAS  Google Scholar 

  • Ejiri H, Sankawa U, Shibata S (1975) Graciliformin and its acetates in Cladonia graciliformis. Phytochemistry 14:277–279

    CAS  Google Scholar 

  • Elix JA (1996) Biochemistry and secondary metabolites. Lichen Biol 1:154–180

    Google Scholar 

  • Elix J, Norfolk S (1975) Synthesis of β-orcinol meta-depsides. Aust J Chem 28:2035–2041

    CAS  Google Scholar 

  • Elix JA (2014) A catalogue of standardized chromatographic data and biosynthetic relationships for lichen substances, 3rd edn. Published by the author, Canberra. http://www.anbg.gov.au/abrs/lichenlist/Chem%20Cat%203.pdf

  • Ertl L (1951) Über die lichtverhältnisse in laubflechten. Planta 39:245–270

    Google Scholar 

  • Esquenazi E, Yang Y-L, Watrous J, Gerwick WH, Dorrestein PC (2009) Imaging mass spectrometry of natural products. Nat Prod Rep 26:1521–1534

    CAS  PubMed  Google Scholar 

  • Ewing DF (1979) 13C substituent effects in monosubstituted benzenes. Org Magn Reson 12:499–524

    CAS  Google Scholar 

  • Exarchou V, Krucker M, van Beek TA, Vervoort J, Gerothanassis IP, Albert K (2005) LC-NMR coupling technology: recent advancements and applications in natural products analysis. Magn Reson Chem 43:681–687

    CAS  PubMed  Google Scholar 

  • Fahmy AR, Niederwieser A, Pataki G, Brenner M (1961) Dünnschicht-Chromatographie von Aminosäuren auf Kieselgel G. 2. Mitteilung. Eine Schnellmethode zur Trennung und zum qualitativen Nachweis von 22 Aminosäuren. Helv Chim Acta 44:2022–2026

    CAS  Google Scholar 

  • Fan TW-M, Lorkiewicz PK, Sellers K, Moseley HNB, Higashi RM, Lane AN (2012) Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther 133:366–391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feige GB, Lumbsch HT, Huneck S, Elix JA (1993) Identification of lichen substances by a standardized high-performance liquid chromatographic method. J Chromatogr A 646:417–427

    CAS  Google Scholar 

  • Feuerer T, Hawksworth DL (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv 16:85–98

    Google Scholar 

  • Fisher RF (1979) Possible allelopathic effects of reindeer-moss (Cladonia) on jack pine and white spruce. For Sci 25:256–260

    Google Scholar 

  • Freysdottir J, Omarsdottir S, Ingólfsdóttir K, Vikingsson A, Olafsdottir ES (2008) In vitro and in vivo immunomodulating effects of traditionally prepared extract and purified compounds from Cetraria islandica. Int Immunopharmacol 8:423–430

    CAS  PubMed  Google Scholar 

  • Friedman M (2004) Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J Agric Food Chem 52:385–406

    CAS  PubMed  Google Scholar 

  • Furuya T, Shibata S, Iizuka H (1966) Gas–liquid chromatography of anthraquinones. J Chromatogr A 21:116–118

    CAS  Google Scholar 

  • Götz A, Eylert E, Eisenreich W, Goebel W (2010) Carbon metabolism of enterobacterial human pathogens growing in epithelial colorectal adenocarcinoma (Caco-2) Cells. PLoS ONE 5:e10586

    PubMed Central  PubMed  Google Scholar 

  • Greer T, Sturm R, Li L (2011) Mass spectrometry imaging for drugs and metabolites. J Proteomics 74:2617–2631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greving MP, Patti GJ, Siuzdak G (2011) Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal Chem 83:2–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grigsby RD, Jamieson WD, McInnes AG, Maass WSG, Taylor A (1974) The mass spectra of derivatives of polyporic acid. Can J Chem 52:4117–4122

    CAS  Google Scholar 

  • Grube M, Cardinale M, Berg G (2012) 17 Bacteria and the Lichen Symbiosis. Fungal Associations, Springer, pp 363–372

    Google Scholar 

  • Halama P, Van Haluwin C (2004) Antifungal activity of lichen extracts and lichenic acids. Biocontrol 49:95–107

    CAS  Google Scholar 

  • Hale ME (1983) The biology of lichens. Edward Arnold, London

    Google Scholar 

  • Hauck M, Huneck S (2007a) Lichen substances affect metal adsorption in Hypogymnia physodes. J Chem Ecol 33:219–223

    CAS  PubMed  Google Scholar 

  • Hauck M, Huneck S (2007b) The putative role of fumarprotocetraric acid in the manganese tolerance of the lichen Lecanora conizaeoides. Lichenologist 39:301–304

    Google Scholar 

  • Hauck M, Willenbruch K, Leuschner C (2009) Lichen substances prevent lichens from nutrient deficiency. J Chem Ecol 35:71–73

    CAS  PubMed  Google Scholar 

  • Heilman AS, Sharp AJ (1963) A probable antibiotic effect of some lichens on bryophytes. Rev Bryol Lichenol 32:215

    Google Scholar 

  • Heinemann M, Sauer U (2010) Systems biology of microbial metabolism. Curr Opin Microbiol 13:337–343

    CAS  PubMed  Google Scholar 

  • Holder JM, Wynn-Williams D, Rull Perez F, Edwards HGM (2000) Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: Acarospora from the Antarctic and Mediterranean. New Phytol 145:271–280

    CAS  Google Scholar 

  • Holland PT, Wilkins AL (1979) Mass spectra of some naturally occurring stictane triterpenoids and their trimethylsilyl derivatives. Org Mass Spectrom 14:160–166

    CAS  Google Scholar 

  • Holzmann G, Leuckert C (1990) Applications of negative fast atom bombardment and MS/MS to screening of lichen compounds. Phytochemistry 29:2277–2283

    CAS  Google Scholar 

  • Honegger R (1986) Ultrastructural studies in lichens. New Phytol 103:797–808

    CAS  Google Scholar 

  • Horhant D, Lamer A-CL, Boustie J, Uriac P, Gouault N (2007) Separation of a mixture of paraconic acids from Cetraria islandica (L.) Ach. employing a fluorous tag—catch and release strategy. Tetrahedron Lett 48:6031–6033

    CAS  Google Scholar 

  • Huneck S (1972) Chemie der Flechteninhaltsstoffe, XCI. Chromonglucoside aus Flechten. J Für Prakt Chem 314:488–498

    CAS  Google Scholar 

  • Huneck S (1976) Inhaltsstoffe von Pyxine coccifera. Phytochemistry 15:799–801

    CAS  Google Scholar 

  • Huneck S, Himmelreich U (1995) Arthogalin, a cyclic depsipeptide from the lichen arthothelium galapagoense. Z Naturforschung Sect Ba J Chem Sci 50:1101–1103

    CAS  Google Scholar 

  • Huneck S, Höfle G (1980) Structure of acaranoic and acarenoic acids. Phytochemistry 19:2713–2715

    CAS  Google Scholar 

  • Huneck S, Schmidt J (1980) Lichen substances—126 mass spectroscopy of natural products—10. Comparative positive and negative ion mass spectroscopy of usnic acid and related compounds. Biol Mass Spectrom 7:301–308

    CAS  Google Scholar 

  • Huneck S, Takeda R (1992) Zur Chemie der Proto-und allo-Proto-lichesterinsäure. Z Für Naturforschung B J Chem Sci 47:842–854

    CAS  Google Scholar 

  • Huneck S, Yoshimura I (1996) Identification of lichen substances. Springer, Berlin

    Google Scholar 

  • Huneck S, Djerassi C, Becher D, Barber M, Von Ardenne M, Steinfelder K, Tümmler R (1968) Flechteninhaltsstoffe—XXXI: Massenspektrometrie und ihre anwendung auf strukturelle und streochemische probleme—CXXIII Massenspektrometrie von depsiden, depsidonen, depsonen, dibenzofuranen und diphenylbutadienen mit positiven und negativen ionen. Tetrahedron 24:2707–2755

    CAS  Google Scholar 

  • Huneck S, Tønsberg T, Bohlmann F (1986) (−)-Allo-pertusaric acid and (−)-dihydropertusaric acid from the lichen Pertusaria albescens. Phytochemistry 25:453–459

    CAS  Google Scholar 

  • Huneck S, Feige GB, Lumbsch HT (1994) High performance liquid chromatographic analysis of aliphatic lichen acids. Phytochem Anal 5:57–60

    CAS  Google Scholar 

  • Huovinen K (1987) A standard HPLC method for the analysis of aromatic lichen in progress and problems in lichenology in the eighties. Bibl Lichenol 25:457–466

    Google Scholar 

  • Hyvärinen M, Koopmann R, Hormi O, Tuomi J (2000) Phenols in reproductive and somatic structures of lichens: a case of optimal defence? Oikos 91:371–375

    Google Scholar 

  • Ikekawa N, Natori S, Itokawa H, Tobinaga S, Matsui M (1965) Gas chromatography of triterpenes. I. Ursanane, Oleanane, and Lupane Groups. Chem Pharm Bull (Tokyo) 13:316–319

    CAS  Google Scholar 

  • Isenor M, Kaminskyj SG, Rodriguez RJ, Redman RS, Gough KM (2010) Characterization of mannitol in Curvularia protuberata hyphae by FTIR and Raman spectromicroscopy. Analyst 135:3249–3254

    CAS  PubMed  Google Scholar 

  • Jilkine K, Gough KM, Julian R, Kaminskyj SG (2008) A sensitive method for examining whole-cell biochemical composition in single cells of filamentous fungi using synchrotron FTIR spectromicroscopy. J Inorg Biochem 102:540–546

    CAS  PubMed  Google Scholar 

  • Jones DF, MacMillan J, Radley M (1963) Plant hormones-III. Identification of gibberellic acid in immature barley and immature grass. Phytochemistry 2:307–314

    CAS  Google Scholar 

  • Jones DL, Clode PL, Kilburn MR, Stockdale EA, Murphy DV (2013) Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum). New Phytol 200:796–807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jorge-Villar SE, Edwards HGM (2010) Lichen colonization of an active volcanic environment: a Raman spectroscopic study of extremophile biomolecular protective strategies. J Raman Spectrosc 41:63–67

    CAS  Google Scholar 

  • Karakus B, Odabasoglu F, Cakir A, Halici Z, Bayir Y, Halici M, Aslan A, Suleyman H (2009) The effects of methanol extract of Lobaria pulmonaria, a lichen species, on indometacin-induced gastric mucosal damage, oxidative stress and neutrophil infiltration. Phytother Res 23:635–639

    PubMed  Google Scholar 

  • Kim HJ, Jang YP (2009) Direct analysis of curcumin in turmeric by DART-MS. Phytochem Anal 20:372–377

    CAS  PubMed  Google Scholar 

  • Kinraide WTB, Ahmadjian V (1970) The effects of usnic acid on the physiology of two cultured species of the lichen alga Trebouxia Puym. Lichenologist 4:234–247

    Google Scholar 

  • Kirschbaum U, Wirth V (1997) Les lichens bio-indicateurs: les reconnaître, évaluer la qualité de l’air. E. Ulmer, Paris

    Google Scholar 

  • Kutney JP, Sanchez IH, Yee TH (1974) Mass spectral fragmentation studies in usnic acid and related compounds. Org Mass Spectrom 8:129–146

    CAS  Google Scholar 

  • Lane AL, Nyadong L, Galhena AS, Shearer TL, Stout EP, Parry RM, Kwasnik M, Wang MD, Hay ME, Fernandez FM (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Natl Acad Sci 106:7314–7319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lang Q, Wai CM (2001) Supercritical fluid extraction in herbal and natural product studies—a practical review. Talanta 53:771–782

    CAS  PubMed  Google Scholar 

  • Lawrey JD (1977) Adaptive significance of O-methylated lichen depsides and depsidones. Lichenologist 9:137–142

    CAS  Google Scholar 

  • Le Pogam P, Legouin B, Le Lamer A-C, Boustie J, Rondeau D (2014) Analysis of the cyanolichen Lichina pygmaea metabolites using in situ DART-MS: from detection to thermochemistry of mycosporine serinol. J Mass Spectrom, in press

    Google Scholar 

  • Lee YJ, Perdian DC, Song Z, Yeung ES, Nikolau BJ (2012) Use of mass spectrometry for imaging metabolites in plants: mass spectrometry for imaging metabolites in plants. Plant J 70:81–95

    CAS  PubMed  Google Scholar 

  • Letcher RM, Eggers SH (1967) Chemistry of lichen constituents. Part IV. Tetrahedron Lett 8:3541–3546

    Google Scholar 

  • Li B, Knudsen C, Hansen NK, Jørgensen K, Kannangara R, Bak S, Takos A, Rook F, Hansen SH, Møller BL, Janfelt C, Bjarnholt N (2013) Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. Plant J 74:1059–1071

    CAS  PubMed  Google Scholar 

  • Liao C, Piercey-Normore MD, Sorensen JL, Gough K (2010) In situ imaging of usnic acid in selected Cladonia spp. by vibrational spectroscopy. Analyst 135:3242–3248

    CAS  PubMed  Google Scholar 

  • Lines CEM, Ratcliffe RG, Rees TAV, Southon TE (1989) A 13C NMR study of photosynthate transport and metabolism in the lichen Xanthoria calcicola Oxner. New Phytol 111:447–456

    CAS  Google Scholar 

  • Lisboa BP, Diczfalusy E (1963) Colour reactions for the in situ characterisation of steroid oestrogens on thin-layer chromatograms. Acta Endocrinol (Copenh) 43:545–560

    CAS  Google Scholar 

  • Lisickov K, Najdenova V, Zoltan D (2002) Application of supercritical CO2 extraction for separation of natural antibiotics from lichens. Herba Pol 48:32–39

    CAS  Google Scholar 

  • Luftmann H, Aranda M, Morlock GE (2007) Automated interface for hyphenation of planar chromatography with mass spectrometry. Rapid Commun Mass Spectrom 21:3772–3776

    CAS  PubMed  Google Scholar 

  • Lumbsch HT, Kashiwadani H, Streimann H (1993) A remarkable new species in the lichen genus Placopsis from Papua New Guinea (lichenized ascomycetes, Agyriaceae). Plant Syst Evol 185:285–292

    CAS  Google Scholar 

  • Luo H, Yamamoto Y, Jeon H-S, Liu YP, Jung JS, Koh YJ, Hur J-S (2011) Production of anti-helicobacter pylori metabolite by the lichen-forming fungus nephromopsis pallescens. J Microbiol 49:66–70

    CAS  PubMed  Google Scholar 

  • Marante FT, Castellano AG, Rosas FE, Aguiar JQ, Barrera JB (2003) Identification and quantitation of allelochemicals from the lichen Lethariella canariensis: phytotoxicity and antioxidative activity. J Chem Ecol 29:2049–2071

    CAS  Google Scholar 

  • Mathey A (1979) Contribution a l’étude de la famille des Trypéthéliacées (lichens pyrénomycètes). Nova Hedwigia 31:917–935

    Google Scholar 

  • Mathey A (1981) LAMMA: new perspectives for lichenology? Fresenius. J Anal Chem 308:249–252

    CAS  Google Scholar 

  • Mathey A, Steffan B, Steglich W (1980) 1, 2-Naphthochinon-Derivate aus Kulturen des Mycosymbionten der Flechte Trypethelium eluteriae (Trypetheliaceae). Liebigs Ann Chem 1980:779–785

    Google Scholar 

  • Mathey A, Van Vaeck L, Steglich W (1987) Investigation of semi-thin cryosections of lichens by laser microprobe mass spectrometry. Anal Chim Acta 195:89–96

    CAS  Google Scholar 

  • Mathey A, Van Roy W, Van Vaeck L, Eckhardt G, Steglich W (1994) In situ analysis of a new perylene quinone in lichens by Fourier-transform laser microprobe mass spectrometry with external source. Rapid Commun Mass Spectrom 8:46–52

    CAS  Google Scholar 

  • Metz H (1961) Dünnschichtchromatographische schnellanalyse bei enzymatischen steroid-umsetzungen. Naturwissenschaften 48:569–570

    CAS  Google Scholar 

  • Mietzsch E, Lumbsch HT, Elix JA (1994) WINTABOLITES (Mactabolites for Windows). Users Man Comput Program Univ Essen 2nd edn. p 54

    Google Scholar 

  • Miglietta ML, Lamanna R (2006) 1H HR-MAS NMR of carotenoids in aqueous samples and raw vegetables. Magn Reson Chem 44:675–685

    CAS  PubMed  Google Scholar 

  • Millot M, Kaouadji M, Champavier Y, Gamond A, Simon A, Chulia AJ (2013) Usnic acid derivatives from Leprocaulon microscopicum. Phytochem Lett 6:31–35

    CAS  Google Scholar 

  • Mitsuno M (1953) Paper chromatography of lichen substances. I. Pharm Bull 1:170–173

    CAS  PubMed  Google Scholar 

  • Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65:157–173

    PubMed  Google Scholar 

  • Morlock G, Schwack W (2010) Hyphenations in planar chromatography. J Chromatogr A 1217:6600–6609

    CAS  PubMed  Google Scholar 

  • Munier R, Macheboeuf M (1949) Microchromatographie de partage des alcaloïdes et de diverses bases azotées biologiques. Bull Soc Chim Biol (Paris) 31:1144–1162

    CAS  Google Scholar 

  • Narui T, Sawada K, Takatsuki S, Okuyama T, Culberson CF, Culberson WL, Shibata S (1998) NMR assignments of depsides and tridepsides of the lichen family Umbilicariaceae. Phytochemistry 48:815–822

    CAS  Google Scholar 

  • Nascimbene J, Tretiach M, Corana F, Lo Schiavo F, Kodnik D, Dainese M, Mannucci B (2014) Patterns of traffic polycyclic aromatic hydrocarbon pollution in mountain areas can be revealed by lichen biomonitoring: a case study in the Dolomites (Eastern Italian Alps). Sci Total Environ 475:90–96

    CAS  PubMed  Google Scholar 

  • Nash TH (2008) Lichen biology. Cambridge University Press, Leiden

    Google Scholar 

  • Nemes P, Vertes A (2012) Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. TrAC Trends Anal Chem 34:22–34

    CAS  Google Scholar 

  • Nemes P, Barton AA, Vertes A (2009) Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal Chem 81:6668–6675

    CAS  PubMed  Google Scholar 

  • Nguyen K-H, Chollet-Krugler M, Gouault N, Tomasi S (2013) UV-protectant metabolites from lichens and their symbiotic partners. Nat Prod Rep 30:1490

    CAS  PubMed  Google Scholar 

  • Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J Chromatogr A 1002:111–136

    CAS  PubMed  Google Scholar 

  • Nimis PL, Skert N (2006) Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. Environ Exp Bot 55:175–182

    CAS  Google Scholar 

  • Nishikawa Y, Michishita K, Kurono G (1973) Studies on the water soluble constituents of lichens. I. Gas chromatographic analysis of low molecular weight carbohydrates. Chem Pharm Bull (Tokyo) 21:1014–1019

    CAS  Google Scholar 

  • Nylander W (1866) Les lichens du Jardin de Luxembourg

    Google Scholar 

  • Odabasoglu F, Cakir A, Suleyman H, Aslan A, Bayir Y, Halici M, Kazaz C (2006) Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J Ethnopharmacol 103:59–65

    CAS  PubMed  Google Scholar 

  • Okuyama E, Umeyama K, Yamazaki M, Kinoshita Y, Yamamoto Y (1995) Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med 61:113–115

    CAS  PubMed  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    CAS  PubMed  Google Scholar 

  • Ozenda P, Clauzade G (1970) Les lichens: étude biologique et flore illustrée. Masson Paris

    Google Scholar 

  • Parrot D, Jan S, Baert N, Guyot S, Tomasi S (2013) Comparative metabolite profiling and chemical study of Ramalina siliquosa complex using LC–ESI-MS/MS approach. Phytochemistry 89:114–124

    CAS  PubMed  Google Scholar 

  • Patton A, Chism P (1951) Quantitative paper chromatography of amino acids. An evaluation of techniques. Anal Chem 23:1683–1685

    CAS  Google Scholar 

  • Pengsuparp T, Cai L, Constant H, Fong HH, Lin L-Z, Kinghorn AD, Pezzuto JM, Cordell GA, Ingolfsdöttir K, Wagner H (1995) Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase. J Nat Prod 58:1024–1031

    CAS  PubMed  Google Scholar 

  • Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, Dove S (2012) A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J 6:1314–1324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polborn K, Steglich W, Connolly JD, Huneck S (1995) Structure of the macrocyclic bis-lactone lepranthin from the lichen arthonia impolita; an X-ray analysis. Z Für Naturforschung B J Chem Sci 50:1111–1114

    CAS  Google Scholar 

  • Pöykkö H, Hyvärinen M, Bačkor M (2005) Removal of lichen secondary metabolites affects food choice and survival of lichenivorous moth larvae. Ecology 86:2623–2632

    Google Scholar 

  • Pyatt FB (1967) The inhibition influence of Peltigera canina on the germination and subsequent growth of graminaceous seeds. Bryologist 70:326–329

    Google Scholar 

  • Ramaut JL (1963a) Chromatographie sur couche mince des despsides et des depsidones. Bull Sociétés Chim Belg 72:316–321

    CAS  Google Scholar 

  • Ramaut JL (1963b) Chromatographie en couche mince des depsidones du β orcinol. Bull Sociétés Chim Belg 72:97–101

    CAS  Google Scholar 

  • Ranković B, Mi\vsić M, Sukdolak S (2008) The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World J Microbiol Biotechnol 24:1239–1242

    Google Scholar 

  • Rezanka T, Dembitsky V (1999a) Novel brominated lipidic compounds from lichens of Central Asia. Phytochemistry 51:963–968

    CAS  PubMed  Google Scholar 

  • Rezanka T, Dembitsky VM (1999b) Fatty acids of lichen species from Tian Shan Mountains. Folia Microbiol (Praha) 44:643–646

    CAS  Google Scholar 

  • Rezanka T, Guschina IA (2001a) Glycoside esters from lichens of Central Asia. Phytochemistry 58:509–516

    CAS  PubMed  Google Scholar 

  • Rezanka T, Guschina IA (2001b) Macrolactone glycosides of three lichen acids from Acarospora gobiensis, a lichen of Central Asia. Phytochemistry 58:1281–1287

    CAS  PubMed  Google Scholar 

  • Rikkinen J (1995) What’s behind the pretty colours? A study on the photobiology of lichens. Finnish Bryological Society

    Google Scholar 

  • Roullier C, Chollet-Krugler M, Pferschy-Wenzig E-M, Maillard A, Rechberger GN, Legouin-Gargadennec B, Bauer R, Boustie J (2011) Characterization and identification of mycosporines-like compounds in cyanolichens. Isolation of mycosporine hydroxyglutamicol from Nephroma laevigatum Ach. Phytochemistry 72:1348–1357

    CAS  PubMed  Google Scholar 

  • Russo A, Piovano M, Lombardo L, Garbarino J, Cardile V (2008) Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life Sci 83:468–474

    CAS  PubMed  Google Scholar 

  • Santesson J (1967a) Chemical studies on lichens—III: the pigments of Thelocarpon epibolum, T. laureri and Ahlesia lichenicola. Phytochemistry 6:685–686

    CAS  Google Scholar 

  • Santesson J (1967b) Chemical studies on lichens. 4. Thin layer chromatography of lichen substances. Acta Chem Scand 21:1162–1172

    CAS  Google Scholar 

  • Santesson J (1969) Chemical studies on lichens. 10. Mass spectrometry on lichens. Ark För Chem 30:363–377

    CAS  Google Scholar 

  • Schmeda-Hirschmann G, Tapia A, Lima B, Pertino M, Sortino M, Zacchino S, de Arias AR, Feresin GE (2008) A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytother Res 22:349–355

    CAS  PubMed  Google Scholar 

  • Schmidt J, Huneck S, Franke P (1981) Lichen substances—128 Mass spectroscopy of natural products—12. Comparative positive and negative ion mass spectroscopy of nitrogen-containing and ring C cleaved usnic acid derivatives. Biol Mass Spectrom 8:293–300

    CAS  Google Scholar 

  • Seco JM, Quinoa E, Riguera R (2004) The assignment of absolute configuration by NMR. Chem Rev 104:17–118

    CAS  Google Scholar 

  • Sharma J, Hood LV (1965) Thin-layer solubilization chromatography: I Phenols. J Chromatogr A 17:307–315

    Google Scholar 

  • Shibata S (2000) Yasuhiko Asahina (1880–1975) and his studies on lichenology and chemistry of lichen metabolites. Bryologist 103:710–719

    CAS  Google Scholar 

  • Shibata S, Takito M, Tanaka O (1950) Paper chromatography of anthraquinone pigments. J Am Chem Soc 72:2789–2790

    CAS  Google Scholar 

  • Shrestha G, St. Clair LL (2013) Lichens: a promising source of antibiotic and anticancer drugs. Phytochem Rev 12:229–244

    CAS  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314

    CAS  Google Scholar 

  • Silverstein RM, Bassler GC, Morrill TC (1998) Spectroscopic identification of organic compounds, 5th edn. Wiley, New York

    Google Scholar 

  • Stahl E, Kaltenbach U (1961) Anisaldehyde-sulphuric acid for sugars, steroids, and terpens. J Chromatogr 5:35–40

    Google Scholar 

  • Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200

    PubMed  Google Scholar 

  • Strack D, Feige GB, Kroll R (1979) Screening of aromatic secondary lichen substances by high-performance liquid-chromatography. Z Naturforschung CA J Biosci 34:695–698

    Google Scholar 

  • Stuart B (2004) Infrared spectroscopy. Wiley Online Library

    Google Scholar 

  • Stuelp PM, Carneiro Leão AMA, Gorin PAJ, Iacomini M (1999) The glucans of Ramalina celastri: relation with chemotypes of other lichens. Carbohydr Polym 40:101–106

    CAS  Google Scholar 

  • Sundholm EG (1978) C-13 NMR-spectra of lichen xanthones—temperature-dependent collapse of long-range couplings to hydrogen-bonded hydroxyl protons. Acta Chem Scand 32B:177–181

    Google Scholar 

  • Sundholm EG (1979) Syntheses and 13C NMR spectra of some 5-chloro-substituted lichen xanthones. Acta Chem Scand 33B:475–482

    Google Scholar 

  • Sundholm EG, Huneck S (1980) C-13 NMR-spectra of lichen depsides, depsidones and depsones. 1. Compounds of the orcinol series. Chem Scr 16:197–200

    CAS  Google Scholar 

  • Sundholm EG, Huneck S (1981) C-13 NMR-spectra of lichen depsides, depsidones and depsones. 2. Compounds of the beta-orcinol series. Chem Scr 18:233–236

    CAS  Google Scholar 

  • Szeghalmi A, Kaminskyj S, Gough KM (2007) A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions. Anal Bioanal Chem 387:1779–1789

    CAS  PubMed  Google Scholar 

  • Tabacchi R, Allemand P, Tsoupras G (1991) Direct analysis of lichens by tandem mass spectrometry. Symbiosis 11:193–206

    CAS  Google Scholar 

  • Takeda K, Hara S, Wada A, Matsumoto N (1963) A systematic, simultaneous analysis of steroid sapogenins by thin-layer chromatography. J Chromatogr A 11:562–564

    CAS  Google Scholar 

  • Tay T, Turk AO, Yilmaz M, Turk H, Kivan\cc M (2004) Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid, and protocetraric acid constituents. Z Naturforschung C J Biosci 59:384–388

    CAS  Google Scholar 

  • Torres A, Hochberg M, Pergament I, Smoum R, Niddam V, Dembitsky VM, Temina M, Dor I, Lev O, Srebnik M (2004) A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur J Biochem 271:780–784

    CAS  PubMed  Google Scholar 

  • Tschesche R, Wulff G (1961) Über Saponine der Spirostanolreihe, VII. Über Digalogenin, ein neues Sapogenin aus den Samen von Digitalis purpurea L. Chem Ber 94:2019–2026

    CAS  Google Scholar 

  • Tschesche R, Lampert F, Snatzke G (1961) Über triterpene: VII. Dünnschicht-und ionenaustauscherpapierchromatographie von triterpenoiden. J Chromatogr A 5:217–224

    CAS  Google Scholar 

  • Van Roy W, Mathey A, Van Vaeck L (1996) In-situ analysis of lichen pigments by Fourier transform laser microprobe mass spectrometry with external ion source. Rapid Commun Mass Spectrom 10:562–572

    Google Scholar 

  • Vijayakumar CS, Viswanathan S, Kannappa Reddy M, Parvathavarthini S, Kundu AB, Sukumar E (2000) Anti-inflammatory activity of (+)-usnic acid. Fitoterapia 71:564–566

    CAS  PubMed  Google Scholar 

  • Wachtmeister CA (1952) Studies on the chemistry of lichens. 1. Separation of depside components by paper chromatography. Acta Chem Scand 6:818–825

    CAS  Google Scholar 

  • Wachtmeister CA (1956) Identification of lichen acids by paper chromatography. Bot Not 109:313–324

    CAS  Google Scholar 

  • Wang X-N, Zhang H-J, Ren D-M, Ji M, Yu W-T, Lou H-X (2009) Lobarialides A-C, antifungal triterpenoids from the lichen Lobaria kurokawae. Chem Biodivers 6:746–753

    CAS  PubMed  Google Scholar 

  • Wenkert E, Baddeley GV, Burfitt IR, Moreno LN (1978) Carbon-13 nuclear magnetic resonance spectroscopy of naturally-occurring substances-LVII triterpenes related to lupane and hopane. Org Magn Reson 11:337–343

    CAS  Google Scholar 

  • Whiton JC, Lawrey JD (1984) Inhibition of crustose lichen spore germination by lichen acids. Bryologist 87:42–43

    Google Scholar 

  • Wilkins AL, Elix JA, Whitton AA (1990) A one-and two-dimensional 1H and 13C NMR study of some lichen triterpenoids of the pyxinol group. Aust J Chem 43:411–417

    CAS  Google Scholar 

  • Wink M, Heinen HJ, Vogt H, Schiebel HM (1984) Cellular localization of quinolizidine alkaloids by laser desorption mass spectrometry (LAMMA 1000). Plant Cell Rep 3:230–233

    CAS  PubMed  Google Scholar 

  • Wojciechowski ZA, Goad LJ, Goodwin TW (1973) Sterols of the lichen Pseudevernia furfuracea. Phytochemistry 12:1433–1436

    CAS  Google Scholar 

  • Wolfender J-L, Ndjoko K, Hostettmann K (2001) The potential of LC-NMR in phytochemical analysis. Phytochem Anal 12:2–22

    CAS  PubMed  Google Scholar 

  • Woodruff HB, Munk ME (1977) A computerized infrared spectral interpreter as a tool in structure elucidation of natural products. J Org Chem 42:1761–1767

    CAS  Google Scholar 

  • Wynn-Williams DD, Edwards HGM, Garcia-Pichel F (1999) Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur J Phycol 34:381–391

    Google Scholar 

  • Yamamoto Y, Miura Y, Kinoshita Y, Higuchi M, Yamada Y, Murakami A, Ohigashi H, Koshimizu K (1995) Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein-Barr virus activation. Chem Pharm Bull (Tokyo) 43:1388–1390

    CAS  Google Scholar 

  • Yoshimura I, Kinoshita Y, Yamamoto Y, Huneck S, Yamada Y (1994) Analysis of secondary metabolites from lichen by high performance liquid chromatography with a photodiode array detector. Phytochem Anal 5:197–205

    CAS  Google Scholar 

  • Zizovic I, Ivanovic J, Misic D, Stamenic M, Djordjevic S, Kukic-Markovic J, Petrovic SD (2012) SFE as a superior technique for isolation of extracts with strong antibacterial activities from lichen Usnea barbata L. J Supercrit Fluids 72:7–14

    CAS  Google Scholar 

Download references

Acknowledgments

Jacques Lagabrielle is greatly acknowledged for his support in providing crystal pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Boustie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Le Pogam, P., Herbette, G., Boustie, J. (2015). Analysis of Lichen Metabolites, a Variety of Approaches. In: Upreti, D., Divakar, P., Shukla, V., Bajpai, R. (eds) Recent Advances in Lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2181-4_11

Download citation

Publish with us

Policies and ethics

Navigation