Structural and Functional Consequences of Myocardial Collagen Remodeling

  • Chapter
Cardiac Adaptation and Failure

Summary

Myocardial fibrillar collagens provide for muscle fiber and cardiac myocyte alignment and impart a tensile strength to the myocardium that maintains ventricular shape and size, and governs tissue stiffness. This network of collagen is intimately related with the myocyte and muscle fiber, as well as the coronary vasculature. Consisting primarily of collagen types I and III, fibrillar collagen is relatively inelastic and, even though normally present in relatively small amounts, plays an important role in the behavior of the ventricle during diastole. In renovascular and genetic hypertension, the hypertrophic response of the myocardium includes a progressive remodeling of the collagen matrix. Typically, there is an increase in collagen concentration, thickening of existing fibrillar collagen, and the addition of new collagen to all components of the matrix. The consequences of this remodeling are a stiffer myocardium and left ventricular diastolic dysfunction. These pathophysiologic aspects of the hypertrophic process are independent of the concomitant remodeling of the myocyte. Thus, an abnormal accumulation of interstitial collagen is a major distinguishing factor between physiologic and pathologic hypertrophy. Removal of less than half of the normal amount of collagen following collagenase activation results in a dilated ventricle with increased compliance. Collagenase activation, collagen degradation, and a dilated, thin-walled left ventricle are evident during ischemia, in dilated cardiomyopathy, and at end-stage heart failure. Thus, chronic changes in the shape and size of the heart are the result of an inadequate interstitial collagen matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Janicki JS, Matsubara BB (1993) Myocardial collagen and left ventricular diastolic function. In: Gaasch WH, LeWinter MM (eds) Left ventricular diastolic dysfunction. Lea and Febiger, Philadelphia, pp 125–140

    Google Scholar 

  2. Matsubara BB, Henegar JR, Janicki JS (1992) Functional and morphological consequences of induced myocardial collagen damage. Circulation 86:1–171

    Article  Google Scholar 

  3. Caulfield JB, Norton P, Weaver RD (1992) Cardiac dilatation associated with collagen alterations. Mol Cell Biochem 118:171–179

    Article  PubMed  CAS  Google Scholar 

  4. Factor SM, Robinson TF, Dominitz R, Cho S (1986) Alterations of the myocardial skeletal framework in acute myocardial infarction with and without ventricular rupture. Am J Cardiovasc Pathol 1:91–97

    Google Scholar 

  5. Robinson TF, Factor SM, Sonnenblick EH (1986) The heart as a suction pump. Sci Am 254:84–91

    Article  PubMed  CAS  Google Scholar 

  6. Robinson TF, Cohen-Gould L, Factor SM (1983) The skeletal framework of mammalian heart muscle: arrangement of inter-and pericellular connective tissue structures. Lab Invest 49:482–487

    PubMed  CAS  Google Scholar 

  7. Ahumada GG, Saffitz JE (1984) Fibronectin in rat heart: a link between cardiac myocytes and collagen. J Histochem Cytochem 32:383–388

    Article  PubMed  CAS  Google Scholar 

  8. Contard F, Koteliansky V, Marotte F, Dubus I, Rappaport L, Samuel J (1991) Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab Invest 64:65–75

    PubMed  CAS  Google Scholar 

  9. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI (1988) Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 62:757–765

    Article  PubMed  CAS  Google Scholar 

  10. Eghbali M, Czaja MJ, Zeydel M, Weiner FR, Seifter S, Blumenfeld OO (1988) Collagen mRNAs in isolated adult heart cells. J Mol Cell Cardiol 20:267–276

    Article  PubMed  CAS  Google Scholar 

  11. Eghbali M, Blumenfeld OO, Seifter S, Buttrick PM, Leinwand LA, Robinson TF, Zern MA, Giambrone MA (1989) Localization of types I, III, IV collagen mRNAs in rat heart cells by in situ hybridization. J Mol Cell Cardiol 21:103–113

    Article  PubMed  CAS  Google Scholar 

  12. Bonnim CM, Sparrow MP, Taylor RR (1981) Collagen synthesis and content in right ventricular hypertrophy in the dog. Am J Physiol 241:H708–H713

    Google Scholar 

  13. Woolley DE (1984) Mammalian collagenases. In: Piez K, Reddi AH (eds) Extracellular matrix biochemistry. Elsevier, New York, pp 119–158

    Google Scholar 

  14. Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 131:2145–2154

    Google Scholar 

  15. Montfort I, Perez-Tamayo R (1975) The distribution of collagenase in normal rat tissues. J Histochem Cytochem 23:910–920

    Article  PubMed  CAS  Google Scholar 

  16. Tyagi SC, Ratajska A, Weber KT (1994) Myocardial matrix metalloproteinase(s): localization and activation. Mol Cell Biochem 126:49–59

    Article  Google Scholar 

  17. Tyagi SC, Matsubara L, Weber KT (1993) Direct activation and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin Biochem 26:191–198

    Article  PubMed  CAS  Google Scholar 

  18. Robinson TF, Cohen-Gould L, Factor SM, Eghbali M, Blumenfeld OO (1988) Structure and function of connective tissue in cardiac muscle: Collagen types I and III in endomysial struts and pericellular fibers. Scanning Elect Microsc 2:1005–1015

    CAS  Google Scholar 

  19. Bing OHL, Matsushita S, Fanburg BL, Levine HJ (1971) Mechanical properties of rat cardiac muscle during experimental hypertrophy. Circ Res 28:234–245

    Article  PubMed  CAS  Google Scholar 

  20. Holubarsch CH, Holubarsch T, Jacob R, Medugorac I, Thiedemann K (1983) Passive elastic properties of myocardium in different models and stages of hypertrophy: A study comparing mechanical, chemical, and morphometric parameters. Perspect Cardiovasc Res 7:323–336

    CAS  Google Scholar 

  21. Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT (1988) Collagen network remodeling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 22:686–695

    Article  PubMed  CAS  Google Scholar 

  22. Narayan S, Janicki JS, Shroff SG, Pick R, Weber KT (1989) Myocardial collagen and mechanics after preventing hypertrophy in hypertensive rats. Am J Hypertens 2:675–682

    Article  PubMed  CAS  Google Scholar 

  23. Brilla CG, Janicki JS, Weber KT (1991) Cardioprotective effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 83:1771–1779

    Article  PubMed  CAS  Google Scholar 

  24. Pearlman ES, Weber KT, Janicki JS, Pietra GG, Fishman AP (1982) Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest 46:158–164

    PubMed  CAS  Google Scholar 

  25. Morkin E, Ashford TP (1968) Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol 215:1409–1413

    PubMed  CAS  Google Scholar 

  26. Skosey JL, Zak R, Martin AF (1972) Biochemical correlates of cardiac hypertrophy. V. Labeling of collagen, myosin and nuclear DNA during experimental myocardial hypertrophy in the rat. Circ Res 31:145–157

    Article  PubMed  CAS  Google Scholar 

  27. Borg TK, Ranson WF, Moshlehy FA, Caulfield JB (1981) Structural basis of ventricular stiffness. Lab Invest 44:49–54

    PubMed  CAS  Google Scholar 

  28. Jalil JE, Doering CW, Janicki JS, Pick R, Shroff S, Weber KT (1989) Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64:1041–1050

    Article  PubMed  CAS  Google Scholar 

  29. Carroll EP, Janicki JS, Pick R, Weber KT (1989) Myocardial stiffness and reparative fibrosis following coronary embolization in the rat. Cardiovasc Res 23:655–661

    Article  PubMed  CAS  Google Scholar 

  30. Bing OHL, Fanburg BL, Brooks WW, Matsushita S (1978) The effect of the lathyrogen β-amino proprionitrile (BAPN) on the mechanical properties of experimentally hypertrophied rat cardiac muscle. Circ Res 43:632–637

    Article  PubMed  CAS  Google Scholar 

  31. Gelpi RJ, Pasipoularides A, Lader AS, Patrick TA, Chase N, Hittinger L, Shannon RP, Bishop SP, Vatner SF (1991) Changes in diastolic cardiac function in develo** and stable perinephritic hypertension in conscious dogs. Circ Res 68:555–567

    Article  PubMed  CAS  Google Scholar 

  32. MacFarlane N, Northridge DB, Wright AR, Grant S, Dargie HJ (1991) A comparative study of left ventricular structure and function in elite athletes. Br J Sports Med 25:45–48

    Article  PubMed  CAS  Google Scholar 

  33. Nixon JV, Wright AR, Porter TR, Roy V, Arrowood JA (1991) Effects of exercise on left ventricular diastolic performance in trained athletes. Am J Cardiol 68:945–949

    Article  PubMed  CAS  Google Scholar 

  34. Shapiro LM, McKenna WJ (1984) Left ventricular hypertrophy: relation of structure to diastolic function in hypertension. Br Heart J 51:637–642

    Article  PubMed  CAS  Google Scholar 

  35. Shahi M, Thorn S, Poulter N, Sever PS, Foale RA (1990) Regression of hypertensive left ventricular hypertrophy and left ventricular diastolic function. Lancet 336:458–461

    Article  PubMed  CAS  Google Scholar 

  36. Szlachcic J, Tubau JF, O’Kelly B, Massie BM (1990) Correlates of diastolic filling abnormalities in hypertension: A Doppler echocardiographic study. Am Heart J 120:386–391

    Article  PubMed  CAS  Google Scholar 

  37. O’Brien LJ, Moore CM (1966) Connective tissue degradation and distensibility characteristics of the non-living heart. Experientia 22:845–847

    Article  PubMed  Google Scholar 

  38. Cannon RO, Butany JW, McManus BM, Speir E, Kravitz AB, Bolli R, Serranus VJ (1983) Early degradation of collagen after myocardial infarction in the heart. Am J Cardiol 52:390–395

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi S, Barry AC, Factor SM (1990) Collagen degradation in ischemic rat hearts. Biochem J 265:233–241

    PubMed  CAS  Google Scholar 

  40. Campbell SE, Diaz-Arias A, Weber KT (1991) Ventricular rupture and fibrillar collagen degradation. Circulation 84:11–558

    Google Scholar 

  41. Romero FJ, Montoro A, Saez GT, Alberola A, Gil F, Vina J, Such L (1987) Myocardial glutathione alterations in acute coronary occlusion in the dog. Free Radic Res Commun 4:27–30

    Article  PubMed  CAS  Google Scholar 

  42. Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C (1987) Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (“stunned”) but viable myocardium. J Am Col Cardiol 10:1322–1334

    Article  CAS  Google Scholar 

  43. Charney RH, Takahashi S, Zhao M, Sonnenblick EH, Eng C (1992) Collagen loss in the stunned myocardium. Circulation 85:1483–1490

    Article  PubMed  CAS  Google Scholar 

  44. Sato S, Ashroy M, Millard RW, Fujiwara H, Schwartz A (1983) Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J Mol Cell Cardiol 15:261–267

    Article  PubMed  CAS  Google Scholar 

  45. Janicki JS, Henegar JR, Matsubara BB (1993) Myocardial fibrillar collagen degradation induced by hemodilution (abstract). J Mol Cell Cardiol 25:S26

    Google Scholar 

  46. Janicki JS, Tyagi SC, Henegar JR, Campbell SE (1993) Myocardial collagenase activity and ventricular dilatation in cardiomyopathic hamsters (abstract). Circulation [Suppl]:I-381

    Google Scholar 

  47. Gertz EW (1972) Cardiomyopathic Syrian hamster: a possible model of human disease. Prog Exp Tumor Res 16:242–260

    PubMed  CAS  Google Scholar 

  48. Weber KT, Pick R, Janicki JS, Gadodia G, Lakier JB (1988) Inadequate collagen tethers in dilated cardiopathy. Am Heart J 116:1641–1646

    Article  PubMed  CAS  Google Scholar 

  49. Reddy HK, Tyagi SC, Tjahja IE, Voelker DJ, Campbell SE, Weber KT (1993) Enhanced endomyocardial collagenase activity in dilated cardiomyopathy: a marker of dilatation and architectural remodeling (abstract). Circulation [Suppl]:I-407

    Google Scholar 

  50. Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Armstrong PW (1990) Fibrillar collagen and the remodeling of the dilated canine left ventricle. Circulation 82:1387–1401

    Article  PubMed  CAS  Google Scholar 

  51. Spinale FG, Tomita M, Zellner JL, Cook JC, Crawford FA (1991) Collagen remodeling and changes in LV function during development and recovery from supraventricular tachycardia. Am J Physiol 261:H308–H318

    PubMed  CAS  Google Scholar 

  52. Weber KT, Clark WA, Janicki JS, Shroff SG (1987) Physiologic versus pathologic hypertrophy and the pressure-overloaded myocardium. J Cardiovasc Pharmacol 10:S37–S50

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Japan

About this chapter

Cite this chapter

Janicki, J.S., Tyagi, S.C., Matsubara, B.B., Campbell, S.E. (1994). Structural and Functional Consequences of Myocardial Collagen Remodeling. In: Hori, M., Maruyama, Y., Reneman, R.S. (eds) Cardiac Adaptation and Failure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67014-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67014-8_20

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67016-2

  • Online ISBN: 978-4-431-67014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation