Molecular Insights into the Regulation of Apoptosis and Cellular Senescence and Their Implications for Cancer

  • Chapter
  • First Online:
DNA Replication, Recombination, and Repair

Abstract

Eukaryotic cells continuously encounter DNA damage caused by uncontrolled DNA replication and several sources of genotoxic stresses such as ultraviolet or ionizing irradiation. The cells have acquired the surveillance system, known as the DNA damage responses, to maintain genomic integrity. The DNA damage responses play an important role in sensing DNA damage, transmitting the signals to downstream targets, and coordinating various cellular responses such as cell-cycle arrest, apoptosis, and cellular senescence. Apoptosis is a highly regulated cell death process that controls cellular homeostasis and prevents survival of injured, damaged, or transformed cells. On the other hand, cellular senescence is not only a potent tumor-suppressive mechanism leading to permanent cell-cycle arrest but also is proposed to drive organismal aging. Recent advances in understanding the molecular mechanisms that regulate apoptosis and cellular senescence identified various key regulators. In this chapter, we will review the signaling networks underlying the induction of apoptosis and cellular senescence and their implications for cancer development and therapy. We will also discuss cellular senescence’s impact beyond the tumor-suppressive function, animal aging, and tissue homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acosta JC, O’Loghlen A, Banito A, Raguz S, Gil J (2008) Control of senescence by CXCR2 and its ligands. Cell Cycle 7(19):2956–2959

    Article  PubMed  CAS  Google Scholar 

  • Adams PD (2009) Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 36(1):2–14

    Article  PubMed  CAS  Google Scholar 

  • Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21(14):1714–1719

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balducci L, Ershler WB (2005) Cancer and ageing: a nexus at several levels. Nat Rev Cancer 5(8):655–662

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Zhan R, Chaudhuri A et al (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12(8):933–938

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444(7119):633–637

    Article  PubMed  CAS  Google Scholar 

  • Baus F, Gire V, Fisher D, Piette J, Dulić V (2003) Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J 22(15):3992–4002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Biton S, Ashkenazi A (2011) NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 145(1):92–103

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5(3):231–237

    PubMed  CAS  Google Scholar 

  • Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8(9):671–682

    Article  PubMed  CAS  Google Scholar 

  • Burstein E, Duckett CS (2003) Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol 15(6):732–737

    Article  PubMed  CAS  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8(3):282–288

    Article  PubMed  CAS  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  PubMed  CAS  Google Scholar 

  • Chehab NH, Malikzay A, Appel M, Halazonetis TD (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14(3):278–288

    PubMed Central  PubMed  CAS  Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ et al (1993) Thymocyte apoptosis induced p53-dependent and independent pathways. Nature 362(6423):849–852

    Article  PubMed  CAS  Google Scholar 

  • Cobrinik D (2005) Pocket proteins and cell cycle control. Oncogene 24(17):2796–2809

    Article  PubMed  CAS  Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10(1):51–57

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PloS Biol 6(12):2853–2868

    Article  PubMed  CAS  Google Scholar 

  • Coppé JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J (2011) Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 286(42):36396–36403

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9(7):501–507

    Article  PubMed  CAS  Google Scholar 

  • Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27(20):2801–2809

    Article  PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198

    Article  PubMed  CAS  Google Scholar 

  • Davoli T, de Lange T (2012) Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21(6):765–776

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davoli T, Denchi EL, de Lange T (2010) Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141(1):81–93

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642

    Article  PubMed  CAS  Google Scholar 

  • D’Orazi G, Cecchinelli B, Bruno T et al (2002) Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feng L, Hollstein M, XuY (2006) Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5(23):2812–2819

    Article  PubMed  CAS  Google Scholar 

  • Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416(6880):560–564

    Article  PubMed  CAS  Google Scholar 

  • Foster BA, Coffey HA, Morin MJ, Rastinejad F (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286(5449):2507–2510

    Article  PubMed  CAS  Google Scholar 

  • Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30(8):1536–1548

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fumagalli M, Rossiello F, Clerici M (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 14(4):355–365

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gosselin K, Martien S, Pourtier A (2009) Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res 69(20):7917–7925

    Article  PubMed  CAS  Google Scholar 

  • Guney I, Sedivy JM (2006) Cellular senescence, epigenetic switches and c-Myc. Cell Cycle 5(20):2319–2323

    Article  PubMed  CAS  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  • He L, He X, Lim LP (2007) A microRNA component of the p53 tumor suppressor network. Nature 447(7148):1130–1134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hock AK, Vousden KH (2012) Tumor suppression by p53: fall of the triumvirate? Cell 149(6):1183–1185

    Article  PubMed  CAS  Google Scholar 

  • Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML (2002) Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Horn HF, Vousden KH (2007) Co** with stress: multiple ways to activate p53. Oncogene 26(9):1306–1316

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  • ** Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):139–163

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3(3):221–227

    Article  PubMed  CAS  Google Scholar 

  • Kosar M, Bartkova J, Hubackova S, Hodny Z, Lukas J, Bartek J (2011) Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 10(3):457–468

    Article  PubMed  CAS  Google Scholar 

  • Krammer PH, Galle PR, Möller P, Debatin KM (1998) CD95(APO-1/Fas)-mediated apoptosis in normal and malignant liver, colon, and hematopoietic cells. Adv Cancer Res 75:251–273

    Article  PubMed  CAS  Google Scholar 

  • Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98(21):12072–12077

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303

    Article  PubMed  CAS  Google Scholar 

  • Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133(6):1019–1031

    Article  PubMed  CAS  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24(22):2463–2479

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36(2):147–150

    Article  PubMed  CAS  Google Scholar 

  • Lapenko O, Prives C (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13(6):951–961

    Article  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ, Oren M (2009) The first years of p53: growing evermore complex. Nat Rev Cancer 9(10):749–758

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu H, Fergusson MM, Castilho RM (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806

    Article  PubMed  CAS  Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362(6423):847–849

    Article  PubMed  CAS  Google Scholar 

  • Mao Z, Ke Z, Gorbunova V, Seluanov A (2012) Replicatively senescent cells are arrested in G1 and G2 phases. Aging (Albany NY) 4(6):431–435

    CAS  Google Scholar 

  • McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG (1994) BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 83(5):1179–1187

    PubMed  CAS  Google Scholar 

  • Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1(6):a000950

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Munro J, Barr NI, Ireland H, Morrison V, Parkinson EK (2004) Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Exp Cell Res 295(2):525–538

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A, Hearn SA, Myers MP, Lowe SW (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126(3):503–514

    Article  PubMed  CAS  Google Scholar 

  • Navarro CL, Cau P, Lévy N (2006) Molecular bases of progeroid syndromes. Hum Mol Genet 15(Spec No 2):R151–R161

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Arakawa H, Tanaka T et al (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102(6):849–862

    Article  PubMed  CAS  Google Scholar 

  • Ohtani N, Hara E (2013) Roles and mechanisms of cellular senescence in regulation of tissue homeostasis. Cancer Sci 104(5):525–530

    Article  PubMed  CAS  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681

    Article  PubMed  CAS  Google Scholar 

  • Polager S, Ginsberg D (2009) p53 and E2f: partners in life and death. Nat Rev Cancer 9(10):738–748

    Article  PubMed  CAS  Google Scholar 

  • Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G (2012) p53 dynamics control cell fate. Science 336(6078):1440–1444

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743

    Article  PubMed  CAS  Google Scholar 

  • Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. Int J Cancer 130(8):1715–1725

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Reed JC, Green DR (2011) Apoptosis: physiology and pathology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16(9):1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Rodier F, Campsi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rodier F, Kim SH, Nijjar T, Yaswen P, Campisi J (2005) Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol 37(5):977–990

    Article  PubMed  CAS  Google Scholar 

  • Rodier F, Coppé JP, Patil CK, Hoeijmakers WA, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rowland BD, Bernards R (2006) Re-evaluating cell-cycle regulation by E2Fs. Cell 127(5):871–874

    Article  PubMed  CAS  Google Scholar 

  • Rufini A, Tucci P, Celardo I, Melino G (2013) Senescence and aging: the critical roles of p53. Oncogene 32(43):5129–5143

    Article  PubMed  CAS  Google Scholar 

  • Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404(6780):892–897

    Article  PubMed  CAS  Google Scholar 

  • Sadaie M, Salama R, Carroll T et al (2013) Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27(16):1800–1808

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sayan AE, Sayan BS, Gogvadze V, Dinsdale D, Nyman U, Hansen TM, Zhivotovsky B, Cohen GM, Knight RA, Melino G (2008) p73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene 27(31):4363–4372

    Article  PubMed  CAS  Google Scholar 

  • Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM (2010) Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res 704(1–3):152–159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  PubMed  CAS  Google Scholar 

  • Shah PP, Donahue G, Otte GL et al (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27(16):1787–1799

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shay JW, Pereira-Smith OM, Wright WE (1991) A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 196(1):33–39

    Article  PubMed  CAS  Google Scholar 

  • Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11(24):3471–3481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6(5):447–458

    Article  PubMed  CAS  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB (2006) Acetylation of the p53 DNA-binding domain requires apoptosis induction. Mol Cell 24(6):841–851

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K (2007) DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25(5):725–738

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H, Hara E (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8(11):1291–1297

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Imai Y, Yamakoshi K et al (2012) DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Mol Cell 45(1):123–131

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Ohkubo S, Tatsuno I, Prives C (2007) hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130(4):638–650

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24(6):827–839

    Article  PubMed  CAS  Google Scholar 

  • Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6(12):909–923

    Article  PubMed  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431

    Article  PubMed  CAS  Google Scholar 

  • Wiebusch L, Hagemeier C (2010) p53- and p21-dependent premature APC/C-Cdh1 activation in G2 is part of the long-term response to genotoxic stress. Oncogene 29(24):3477–3489

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Ludwig RL, Jensen JP et al (2005) Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7(6):547–559

    Article  PubMed  CAS  Google Scholar 

  • Ye C, Zhang X, Wan J, Chang L, Hu W, Bing Z, Zhang S, Li J, He J, Wang J, Zhou G (2013) Radiation-induced cellular senescence results from a slippage of long-term G2 arrested cells into G1 phase. Cell Cycle 12(9):1424–1432

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352(6333):345–347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Keiko Kono for critically reading the manuscript and all of the members of Nakanishi’s laboratory for useful discussions during the preparation of this manuscript. We also regret not being able to cite all the major contributions to this field and those colleagues whose work we should have cited but inadvertently did not. M.N. was supported by a Grants-in-Aid for Scientific Research on Innovative Areas, “Cell Fate Control”; Scientific Research (A); and Challenging Exploratory Research from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nakanishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Johmura, Y., Nakanishi, M. (2016). Molecular Insights into the Regulation of Apoptosis and Cellular Senescence and Their Implications for Cancer. In: Hanaoka, F., Sugasawa, K. (eds) DNA Replication, Recombination, and Repair. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55873-6_18

Download citation

Publish with us

Policies and ethics

Navigation